These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 607019)
1. A simple network thermodynamic method for series-parallel coupled flows: II. The non-linear theory, with applications to coupled solute and volume flow in a series membrane. Mikulecky DC J Theor Biol; 1977 Dec; 69(3):511-41. PubMed ID: 607019 [No Abstract] [Full Text] [Related]
2. A simple network thermodynamic method for series-parallel coupled flows. III. Application to coupled solute and volume flows through epithelial membranes. Mikulecky DC; Thomas SR J Theor Biol; 1978 Aug; 73(4):697-710. PubMed ID: 703342 [No Abstract] [Full Text] [Related]
3. A simple network thermodynamic method for modeling series-parallel coupled flows. I. The linear case. Mikulecky DC; Wiegand WA; Shiner JS J Theor Biol; 1977 Dec; 69(3):471-510. PubMed ID: 607018 [No Abstract] [Full Text] [Related]
4. Network thermodynamic analysis and stimulation of isotonic solute-coupled volume flow in leaky epithelia: an example of the use of network theory to provide the qualitative aspects of a complex system and its verification by stimulation. Fidelman ML; Mikulecky DC J Theor Biol; 1988 Jan; 130(1):73-93. PubMed ID: 3419175 [TBL] [Abstract][Full Text] [Related]
5. A network thermodynamic two-port element to represent the coupled flow of salt and current. Improved alternative for the equivalent circuit. Mikulecky DC Biophys J; 1979 Feb; 25(2 Pt 1):323-39. PubMed ID: 262391 [TBL] [Abstract][Full Text] [Related]
6. A network thermodynamic model of salt and water flow across the kidney proximal tubule. Thomas SR; Mikulecky DC Am J Physiol; 1978 Dec; 235(6):F638-48. PubMed ID: 736148 [TBL] [Abstract][Full Text] [Related]
7. The use of linear nonequilibrium thermodynamics in the study of renal physiology. Essig A; Caplan SR Am J Physiol; 1979 Mar; 236(3):F211-9. PubMed ID: 371416 [TBL] [Abstract][Full Text] [Related]
8. Equilibrium potentials of membrane electrodes. Wang JH; Copeland E Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1909-11. PubMed ID: 4516194 [TBL] [Abstract][Full Text] [Related]
9. One-dimensional potential of mean force underestimates activation barrier for transport across flexible lipid membranes. Kopelevich DI J Chem Phys; 2013 Oct; 139(13):134906. PubMed ID: 24116584 [TBL] [Abstract][Full Text] [Related]
10. Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. I. Inequality of reflection coefficients for volume flow and solute flow. Friedman MH; Meyer RA Biophys J; 1981 Jun; 34(3):535-44. PubMed ID: 7248473 [TBL] [Abstract][Full Text] [Related]
11. [THERMODYNAMIC BASIS FOR THE THEORY OF THE MEMBRANE POTENTIAL]. PALATY V Cesk Fysiol; 1964 Oct; 13():461-8. PubMed ID: 14226147 [No Abstract] [Full Text] [Related]
12. A binding site model of membrane transport: binary and cooperative flows. Lee MH; Berker AN; Stanley HE; Essig A J Membr Biol; 1979 Nov; 50(3-4):205-24. PubMed ID: 513113 [TBL] [Abstract][Full Text] [Related]
13. [Modelling of a biological membrane transport system by network thermodynamics]. Imai Y Nihon Seirigaku Zasshi; 1988; 50(1):1-13. PubMed ID: 3373435 [No Abstract] [Full Text] [Related]
14. Diffusion and convective flow across membranes: irreversible the thermodynamic approach. Bresler EH; Wendt RP Science; 1969 Feb; 163(3870):944-5. PubMed ID: 5763878 [TBL] [Abstract][Full Text] [Related]
15. Theoretical and experimental studies of transport of micelle-solubilized solutes. Amidon GE; Higuchi WI; Ho NF J Pharm Sci; 1982 Jan; 71(1):77-84. PubMed ID: 7057387 [TBL] [Abstract][Full Text] [Related]
16. A quantitative description of equilibrium and homeostatic thickness regulation in the in vivo cornea. I. Normal cornea. Friedman MH Biophys J; 1972 Jun; 12(6):648-65. PubMed ID: 5063840 [TBL] [Abstract][Full Text] [Related]
17. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions]. Slezak A; Grzegorczyn S Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950 [TBL] [Abstract][Full Text] [Related]
18. Critical review of coupled flux formulations for clay membranes based on nonequilibrium thermodynamics. Malusis MA; Shackelford CD; Maneval JE J Contam Hydrol; 2012 Sep; 138-139():40-59. PubMed ID: 22797191 [TBL] [Abstract][Full Text] [Related]
19. Coupling of ion flows in cell suspension systems. Geck P; Heinz E Ann N Y Acad Sci; 1980; 341():57-66. PubMed ID: 6930842 [TBL] [Abstract][Full Text] [Related]
20. Water movement: does thermodynamic interpretation distort reality? Essig A; Caplan SR Am J Physiol; 1989 Mar; 256(3 Pt 1):C694-8. PubMed ID: 2923202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]