BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 6072273)

  • 1. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors.
    Eddy AA; Mulcahy MF; Thomson PJ
    Biochem J; 1967 Jun; 103(3):863-76. PubMed ID: 6072273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide.
    Eddy AA
    Biochem J; 1968 Jul; 108(3):489-98. PubMed ID: 5667259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further observations on the inhibitory effect of extracellular potassium ions on glycine uptake by mouse ascites-tumour cells.
    Eddy AA; Hogg MC
    Biochem J; 1969 Oct; 114(4):807-14. PubMed ID: 5343789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sodium ion concentration gradient formed during the absorption of glycine by mouse ascites-tumour cells.
    Eddy AA
    Biochem J; 1969 Nov; 115(3):505-9. PubMed ID: 5353524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide.
    Eddy AA
    Biochem J; 1968 Jun; 108(2):195-206. PubMed ID: 5665884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid absorption by mouse ascites-tumour cells depleted of both endogenous amino acids and adenosine triphosphate.
    Morville M; Reid M; Eddy AA
    Biochem J; 1973 May; 134(1):11-26. PubMed ID: 4723218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movements of labelled sodium ions in isolated rat superior cervical ganglia.
    Brown DA; Scholfield CN
    J Physiol; 1974 Oct; 242(2):321-51. PubMed ID: 4455816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Na, metabolic inhibitors and ATP on Ca movements in L cells.
    Lamb JF; Lindsay R
    J Physiol; 1971 Nov; 218(3):691-708. PubMed ID: 5133952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ouabain and metabolic inhibitors on the Na and K movements and nucleotide contents of L cells.
    Lamb JF; MacKinnon MG
    J Physiol; 1971 Mar; 213(3):665-82. PubMed ID: 5102532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interctions between potassium ions and glycine transport in the yeast Saccharomyces carlsbergensis.
    Eddy AA; Indge KJ; Backen K; Nowacki JA
    Biochem J; 1970 Dec; 120(4):845-52. PubMed ID: 5495156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of metabolic inhibitors on amino acid uptake and the levels of ATP, Na+, and K+ in incubated slices of mouse brain.
    Banay-Schwartz M; Teller DN; Gergely A; Lajtha A
    Brain Res; 1974 May; 71(1):117-31. PubMed ID: 4132385
    [No Abstract]   [Full Text] [Related]  

  • 13. An energy-dependent, sodium-independent component of active p-aminohippurate transport in rabbit renal cortex.
    Maxild J; Møller JV; Sheikh MI
    J Physiol; 1981 Jan; 310():273-83. PubMed ID: 7230036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in ATP by reversal of the Na-K-pump in mammalian non-myelinated nerve fibres.
    Chmouliovsky M; Straub RW
    Pflugers Arch; 1974; 350(4):309-20. PubMed ID: 4472694
    [No Abstract]   [Full Text] [Related]  

  • 15. Active transport of glycine by mouse pancreas. Evidence against the Na + gradient hypothesis.
    Lin KT; Johnstone RM
    Biochim Biophys Acta; 1971 Oct; 249(1):144-58. PubMed ID: 5141122
    [No Abstract]   [Full Text] [Related]  

  • 16. Na+-dependent amino acid transport in preimplantation mouse embryos. II. Metabolic inhibitors and nature of the cation requirement.
    Borland RM; Tasca RJ
    Dev Biol; 1975 Sep; 46(1):192-201. PubMed ID: 1158023
    [No Abstract]   [Full Text] [Related]  

  • 17. alpha-Adrenergic stimulation of glycolysis and Na+, K+-transport in perfused rat liver.
    Becker J; Jakob A
    Eur J Biochem; 1982 Nov; 128(2-3):293-6. PubMed ID: 6295755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of som metabolic inhibitors on the electrolyte and urea concentration gradients in rat kidney.
    Heller J; Tata PS
    Physiol Bohemoslov; 1967; 16(5):428-40. PubMed ID: 4283660
    [No Abstract]   [Full Text] [Related]  

  • 20. Electrical potential and short circuit current of an in vitro preparation of rat colon mucosa.
    Edmonds CJ; Marriott J
    J Physiol; 1968 Feb; 194(2):479-94. PubMed ID: 5639362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.