These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 6072273)
1. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors. Eddy AA; Mulcahy MF; Thomson PJ Biochem J; 1967 Jun; 103(3):863-76. PubMed ID: 6072273 [TBL] [Abstract][Full Text] [Related]
2. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide. Eddy AA Biochem J; 1968 Jul; 108(3):489-98. PubMed ID: 5667259 [TBL] [Abstract][Full Text] [Related]
3. Further observations on the inhibitory effect of extracellular potassium ions on glycine uptake by mouse ascites-tumour cells. Eddy AA; Hogg MC Biochem J; 1969 Oct; 114(4):807-14. PubMed ID: 5343789 [TBL] [Abstract][Full Text] [Related]
4. A sodium ion concentration gradient formed during the absorption of glycine by mouse ascites-tumour cells. Eddy AA Biochem J; 1969 Nov; 115(3):505-9. PubMed ID: 5353524 [TBL] [Abstract][Full Text] [Related]
5. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide. Eddy AA Biochem J; 1968 Jun; 108(2):195-206. PubMed ID: 5665884 [TBL] [Abstract][Full Text] [Related]
6. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate. Reid M; Gibb LE; Eddy AA Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255 [TBL] [Abstract][Full Text] [Related]
7. Amino acid absorption by mouse ascites-tumour cells depleted of both endogenous amino acids and adenosine triphosphate. Morville M; Reid M; Eddy AA Biochem J; 1973 May; 134(1):11-26. PubMed ID: 4723218 [TBL] [Abstract][Full Text] [Related]
8. Movements of labelled sodium ions in isolated rat superior cervical ganglia. Brown DA; Scholfield CN J Physiol; 1974 Oct; 242(2):321-51. PubMed ID: 4455816 [TBL] [Abstract][Full Text] [Related]
9. Effect of Na, metabolic inhibitors and ATP on Ca movements in L cells. Lamb JF; Lindsay R J Physiol; 1971 Nov; 218(3):691-708. PubMed ID: 5133952 [TBL] [Abstract][Full Text] [Related]
10. Effect of ouabain and metabolic inhibitors on the Na and K movements and nucleotide contents of L cells. Lamb JF; MacKinnon MG J Physiol; 1971 Mar; 213(3):665-82. PubMed ID: 5102532 [TBL] [Abstract][Full Text] [Related]
11. Interctions between potassium ions and glycine transport in the yeast Saccharomyces carlsbergensis. Eddy AA; Indge KJ; Backen K; Nowacki JA Biochem J; 1970 Dec; 120(4):845-52. PubMed ID: 5495156 [TBL] [Abstract][Full Text] [Related]
12. The effects of metabolic inhibitors on amino acid uptake and the levels of ATP, Na+, and K+ in incubated slices of mouse brain. Banay-Schwartz M; Teller DN; Gergely A; Lajtha A Brain Res; 1974 May; 71(1):117-31. PubMed ID: 4132385 [No Abstract] [Full Text] [Related]
13. An energy-dependent, sodium-independent component of active p-aminohippurate transport in rabbit renal cortex. Maxild J; Møller JV; Sheikh MI J Physiol; 1981 Jan; 310():273-83. PubMed ID: 7230036 [TBL] [Abstract][Full Text] [Related]
14. Increase in ATP by reversal of the Na-K-pump in mammalian non-myelinated nerve fibres. Chmouliovsky M; Straub RW Pflugers Arch; 1974; 350(4):309-20. PubMed ID: 4472694 [No Abstract] [Full Text] [Related]
15. Active transport of glycine by mouse pancreas. Evidence against the Na + gradient hypothesis. Lin KT; Johnstone RM Biochim Biophys Acta; 1971 Oct; 249(1):144-58. PubMed ID: 5141122 [No Abstract] [Full Text] [Related]
16. Na+-dependent amino acid transport in preimplantation mouse embryos. II. Metabolic inhibitors and nature of the cation requirement. Borland RM; Tasca RJ Dev Biol; 1975 Sep; 46(1):192-201. PubMed ID: 1158023 [No Abstract] [Full Text] [Related]
17. alpha-Adrenergic stimulation of glycolysis and Na+, K+-transport in perfused rat liver. Becker J; Jakob A Eur J Biochem; 1982 Nov; 128(2-3):293-6. PubMed ID: 6295755 [TBL] [Abstract][Full Text] [Related]
18. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase. Grisham CM; Mildvan AS J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521 [TBL] [Abstract][Full Text] [Related]
19. Effect of som metabolic inhibitors on the electrolyte and urea concentration gradients in rat kidney. Heller J; Tata PS Physiol Bohemoslov; 1967; 16(5):428-40. PubMed ID: 4283660 [No Abstract] [Full Text] [Related]
20. Electrical potential and short circuit current of an in vitro preparation of rat colon mucosa. Edmonds CJ; Marriott J J Physiol; 1968 Feb; 194(2):479-94. PubMed ID: 5639362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]