These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 6073043)

  • 41. Changes of thermostability and activity of thermolysin on nitration with tetranitromethane.
    Ota Y; Tanabe S; Hachimori A; Samejima T
    J Biochem; 1974 Oct; 76(4):871-8. PubMed ID: 4436289
    [No Abstract]   [Full Text] [Related]  

  • 42. Affinity labelling of carboxypeptidase B: modification of a methionyl residue.
    Zisapel N; Sokolovsky M
    Biochem Biophys Res Commun; 1974 Jun; 58(4):951-9. PubMed ID: 4857892
    [No Abstract]   [Full Text] [Related]  

  • 43. Pituitary lactogenic hormone. Reaction of tetranitromethane with ovine hormone.
    Ma L; Brovetto-Cruz J; Li CH
    Biochemistry; 1970 May; 9(11):2302-6. PubMed ID: 5424205
    [No Abstract]   [Full Text] [Related]  

  • 44. Functional arginyl residues in carboxypeptidase A. Modification with butanedione.
    Riordan JF
    Biochemistry; 1973 Sep; 12(20):3915-23. PubMed ID: 4355543
    [No Abstract]   [Full Text] [Related]  

  • 45. Metal-combining properties of human lactoferrin. The effect of nitration of lactoferrin with tetranitromethane.
    Teuwissen B; Masson PL; Osinski P; Heremans JF
    Eur J Biochem; 1973 Jun; 35(2):366-71. PubMed ID: 4717928
    [No Abstract]   [Full Text] [Related]  

  • 46. Effect of ultraviolet irradiation on composition and function of carboxypeptidase A.
    Piras R; Vallee BL
    Biochemistry; 1966 Mar; 5(3):849-54. PubMed ID: 5911295
    [No Abstract]   [Full Text] [Related]  

  • 47. Modification of carboxyl groups in bovine carboxypeptidase A. II. Chemical identification of a functional glutamic acid residue and other reactive groups.
    Pétra PH; Neurath H
    Biochemistry; 1971 Aug; 10(17):3171-7. PubMed ID: 5165842
    [No Abstract]   [Full Text] [Related]  

  • 48. Role of tyrosine residues on structure-function of fructose-1,6-biphosphate aldolase from Ceratitis capitata.
    Gavilanes FG; Gavilanes JG
    Int J Pept Protein Res; 1982 Feb; 19(2):137-42. PubMed ID: 7118391
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification and some enzymic properties of a fungal carboxypeptidase.
    Prescott JM; Boston JD
    Arch Biochem Biophys; 1967 Sep; 121(3):555-62. PubMed ID: 5624805
    [No Abstract]   [Full Text] [Related]  

  • 50. Iodocarboxypeptidase.
    Simpson RT; Vallee BL
    Biochemistry; 1966 May; 5(5):1760-7. PubMed ID: 5961294
    [No Abstract]   [Full Text] [Related]  

  • 51. The sequence around the active-center tyrosyl of porcine carboxypeptidase B.
    Roholt OA; Pressman D
    Eur J Biochem; 1971 Jan; 18(1):79-85. PubMed ID: 4924880
    [No Abstract]   [Full Text] [Related]  

  • 52. Structural and functional determinants of Mucor miehei protease. IV. Nitration and spectrophotometric titration of tyrosine residues.
    Rickert WS; McBride-Warren PA
    Biochim Biophys Acta; 1974 Dec; 371(2):368-78. PubMed ID: 4433573
    [No Abstract]   [Full Text] [Related]  

  • 53. Selective nitration of tyrosines-26 and -64 in bacteriorhodopsin with tetranitromethane.
    Scherrer P; Stoeckenius W
    Biochemistry; 1984 Dec; 23(25):6195-202. PubMed ID: 6549264
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modification of the carboxypeptidase A active site residue Glu-270 prevents interaction with a protein protease inhibitor from Ascaris.
    Homandberg GA; Minor ST; Peanasky RJ
    Biochim Biophys Acta; 1980 Apr; 612(2):384-94. PubMed ID: 7370277
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of an essential tyrosyl residue in the binding site of Schizophyllum commune xylanase A.
    Bray MR; Clarke AJ
    Biochemistry; 1995 Feb; 34(6):2006-14. PubMed ID: 7849058
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preferential nitration with tetranitromethane of a specific tyrosine residue in penicillinase from Staphylococcus aureus PCl. Evidence that the preferentially nitrated residue is not part of the active site but that loss of activity is due to intermolecular cross-linking.
    Bristow AF; Virden R
    Biochem J; 1978 Feb; 169(2):381-8. PubMed ID: 629760
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitration of functional tyrosyl residues in rabbit muscle phosphorylase B.
    Prisco G; Zito R; Cacace MG
    Biochem Biophys Res Commun; 1977 Jun; 76(3):850-4. PubMed ID: 901449
    [No Abstract]   [Full Text] [Related]  

  • 58. [Action mechanism of lactate dehydrogenase. VI. Alteration of the biochemical properties of lactate dehydrogenase from pig heart muscle by nitration with tetranitromethane].
    Jeckel D; Anders R; Pfleiderer G
    Hoppe Seylers Z Physiol Chem; 1971 Jun; 352(6):769-79. PubMed ID: 5104200
    [No Abstract]   [Full Text] [Related]  

  • 59. Extreme state of ionization of benzylsuccinate bound by carboxypeptidase A.
    Palmer AR; Ellis PD; Wolfenden R
    Biochemistry; 1982 Sep; 21(20):5056-9. PubMed ID: 7138846
    [No Abstract]   [Full Text] [Related]  

  • 60. Carboxylesterases (EC 3.1.1). Kinetic studies on carboxylesterases.
    Stoops JK; Horgan DJ; Runnegar MT; De Jersey J; Webb EC; Zerner B
    Biochemistry; 1969 May; 8(5):2026-33. PubMed ID: 5815945
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.