These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 6075638)

  • 1. Fatigue contracture of skeletal muscle.
    Dixon HH; O'Hara M; Peterson RD
    Northwest Med; 1967 Sep; 66(9):813-6. PubMed ID: 6075638
    [No Abstract]   [Full Text] [Related]  

  • 2. [The level of macroergic phosphate compounds and inorganic phosphate in isolated muscle, both resting and under conditions of brief tetanus].
    Allik TA
    Biokhimiia; 1965; 30(3):495-8. PubMed ID: 5871999
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolic and nonmetabolic components of fatigue monitored with 31P-NMR.
    Baker AJ; Carson PJ; Miller RG; Weiner MW
    Muscle Nerve; 1994 Sep; 17(9):1002-9. PubMed ID: 8065387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural probes for cholinergic sites: L-bebeerine actions on the neuromuscular transmission, the nicotinic receptor/ionic channel complex, and contraction of skeletal muscles.
    Souccar C; Borrás MR; Corrado AP; Lima-Landman MT; Lapa AJ
    Acta Physiol Pharmacol Ther Latinoam; 1999; 49(4):268-78. PubMed ID: 10797870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramuscular pressure and tissue oxygenation during low-force static contraction do not underlie muscle fatigue.
    Blangsted AK; Vedsted P; Sjøgaard G; Søgaard K
    Acta Physiol Scand; 2005 Apr; 183(4):379-88. PubMed ID: 15799774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired skeletal muscle fatigue resistance in rats with pressure overload-induced left ventricular hypertrophy.
    Levy LB; Avkiran M; Ferrari R; Hearse DJ
    J Mol Cell Cardiol; 1996 Jan; 28(1):183-95. PubMed ID: 8745226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate metabolites in muscular contraction caused by magnetic stimulation.
    Chiba A; Inase M
    Bioelectromagnetics; 2003 Jul; 24(5):366-71. PubMed ID: 12820294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of function and energy metabolism in rat ischemic skeletal muscle by 31P-NMR spectroscopy: effects of torbafylline.
    Koch H; Okyayuz-Baklouti I; Norris D; Kogler H; Leibfritz D
    J Med; 1993; 24(1):47-66. PubMed ID: 8501403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emphysema-induced reductions in locomotory skeletal muscle contractile function.
    Mattson JP; Martin JC
    Exp Physiol; 2005 Jul; 90(4):519-25. PubMed ID: 15755817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deuterium oxide effects upon three parameters characterizing the activity of glycerol-extracted muscle: phosphate release, ATP-induced shortening, and 22Na+ distribution.
    Dragomir CT; Margineanu I; Ungureanu D; Filipescu G; Barbier A; Alexianu D
    Physiol Chem Phys; 1980; 12(1):69-76. PubMed ID: 6449018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ischemic preconditioning improves postischemic function, but not energy metabolism of skeletal muscles].
    Gürke L; Marx A; Sutter PM; Frentzel A; Martinoli S; Landmann J; Heberer M
    Swiss Surg; 1995; (2):107-9. PubMed ID: 8590287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A-band movement and junctional gap dissociation during caffeine-induced contracture of skeletal muscle fibers.
    Yoshioka T; Shirota T; Tazoe T; Tanaka O; Kimura M; Yamashita-Goto K
    Tokai J Exp Clin Med; 1995 Jul; 20(2):99-108. PubMed ID: 8797266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of temperature of the physiology of muscular fatigue.
    Kumudavalli I; Swami KS
    Indian J Exp Biol; 1967 Jul; 5(3):162-4. PubMed ID: 5583082
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of vitamin E deficiency on fatigue and muscle contractile properties.
    Coombes JS; Rowell B; Dodd SL; Demirel HA; Naito H; Shanely RA; Powers SK
    Eur J Appl Physiol; 2002 Jul; 87(3):272-7. PubMed ID: 12111289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of congestive heart failure on Ca2+ handling in skeletal muscle during fatigue.
    Lunde PK; Sejersted OM; Thorud HM; Tønnessen T; Henriksen UL; Christensen G; Westerblad H; Bruton J
    Circ Res; 2006 Jun; 98(12):1514-9. PubMed ID: 16690878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo modular control analysis of energy metabolism in contracting skeletal muscle.
    Arsac LM; Beuste C; Miraux S; Deschodt-Arsac V; Thiaudiere E; Franconi JM; Diolez PH
    Biochem J; 2008 Sep; 414(3):391-7. PubMed ID: 18498244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased muscle fatigability in GLUT-4-deficient mice.
    Gorselink M; Drost MR; de Brouwer KF; Schaart G; van Kranenburg GP; Roemen TH; van Bilsen M; Charron MJ; van der Vusse GJ
    Am J Physiol Endocrinol Metab; 2002 Feb; 282(2):E348-54. PubMed ID: 11788366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ischemic preconditioning improves post-ischemic skeletal muscle function.
    Gürke L; Marx A; Sutter PM; Frentzel A; Salm T; Harder F; Seelig J; Heberer M
    Am Surg; 1996 May; 62(5):391-4. PubMed ID: 8615570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. History dependence of force production in skeletal muscle: a proposal for mechanisms.
    Herzog W
    J Electromyogr Kinesiol; 1998 Apr; 8(2):111-7. PubMed ID: 9680951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium and caffeine contractures of mouse muscles before and after fatiguing stimulation.
    Pagala M; Ravindran K; Amaladevi B; Namba T; Grob D
    Muscle Nerve; 1994 Aug; 17(8):852-9. PubMed ID: 8041392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.