These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 6076112)

  • 1. Experimental microbiology of saturated salt solutions and other harsh environments. 3. Growth of salt-tolerant penicillium notatum in boron-rich media.
    Roberts K; Siegel SM
    Plant Physiol; 1967 Sep; 42(9):1215-8. PubMed ID: 6076112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiology of saturated salt solutions and other harsh environments. II. Ribonucleotide dependency in the growth of a salt-habituated Penicillium notatum in salt-free nutrient media.
    Siegel SM; Roberts K; Lederman M; Daly O
    Plant Physiol; 1967 Feb; 42(2):201-4. PubMed ID: 6040891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiology of saturated salt solutions and other harsh environments. IV. New observations on ribonucleotide-induced recovery of KCl-habituated Penicillium notatum.
    Siegel SM; Roberts K
    Plant Physiol; 1968 Jan; 43(1):73-5. PubMed ID: 5638041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiology of saturated salt solutions and other harsh environments: v. Relation of inosine-5'-phosphate and carbohydrate to growth of wildtype and mutant penicillium in boric Acid and potassium chloride selective media.
    Siegel SM
    Physiol Plant; 1969; 22(6):1152-7. PubMed ID: 20925664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fat formation in preformed fungal mats of Penicillium notatum.
    Naguib K; Hanna HA
    Mycopathol Mycol Appl; 1974 Nov; 54(3):303-11. PubMed ID: 4437588
    [No Abstract]   [Full Text] [Related]  

  • 6. The microbiology of saturated salt solutions and other harsh environments, I. Growth of a salt-dependent bacterial form in LiCL-saturated nutrient broth.
    Siegel SM; Roberts K
    Proc Natl Acad Sci U S A; 1966 Nov; 56(5):1505-8. PubMed ID: 4961688
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of medium components and metabolic inhibitors on beta-galactosidase production and secretion by Penicillium notatum 1.
    Fiedurek J; Gromada A; Jamroz J
    J Basic Microbiol; 1996; 36(1):27-32. PubMed ID: 8819842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Chitin of mycelial fungi of the genus Penicillium].
    Kostina AM; Babitskaia VG; Lobanok AG
    Prikl Biokhim Mikrobiol; 1978; 14(4):586-93. PubMed ID: 724666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solubilization and accumulation of copper from elementary surfaces by penicillium notatum.
    Siegel SM
    Environ Biol Med; 1973; 2(1):19-22. PubMed ID: 4803208
    [No Abstract]   [Full Text] [Related]  

  • 10. Fungal bio-sorption potential of chromium in Norkrans liquid medium by shake flask technique.
    Igiehon NO; Babalola OO
    J Basic Microbiol; 2019 Jan; 59(1):62-73. PubMed ID: 30288769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Phenoxazinones in culture media solutions of Penicillium notatum Westl].
    Bär H; Zarnack J; Pfeifer S
    Pharmazie; 1971 May; 26(5):311. PubMed ID: 5563065
    [No Abstract]   [Full Text] [Related]  

  • 12. Relationship between ecophysiological factors, growth and ochratoxin A contamination of dry-cured sausage based matrices.
    Rodríguez A; Capela D; Medina Á; Córdoba JJ; Magan N
    Int J Food Microbiol; 2015 Feb; 194():71-7. PubMed ID: 25437060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature and relative humidity requirements of species of Penicillium isolated from yellow dent corn kernels.
    Mislivec PB; Tuite J
    Mycologia; 1970; 62(1):75-88. PubMed ID: 4314984
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of inoculum type, inorganic salt and nitrogen to carbon ratio on sclerotium formation and carotenoid production in surface culture of Penicillium sp. PT95.
    Han JR; Xu J; Zhou XM
    J Basic Microbiol; 2002; 42(4):254-9. PubMed ID: 12210549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BIO-PRECIPITATES PRODUCED BY TWO AUTOCHTHONOUS BORON TOLERANT
    Moraga NB; Irazusta V; Amoroso MJ; Rajal VB
    J Environ Chem Eng; 2017 Aug; 5(4):3373-3383. PubMed ID: 29503806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced solubilization of rock phosphate by Penicillium bilaiae in pH-buffered solution culture.
    Takeda M; Knight JD
    Can J Microbiol; 2006 Nov; 52(11):1121-9. PubMed ID: 17215904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of an extremely boron-tolerant strain of Bacillus firmus.
    Verce MF; Stiles AR; Chong KC; Terry N
    Can J Microbiol; 2012 Jun; 58(6):811-4. PubMed ID: 22607488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.
    Papanikolaou S; Dimou A; Fakas S; Diamantopoulou P; Philippoussis A; Galiotou-Panayotou M; Aggelis G
    J Appl Microbiol; 2011 May; 110(5):1138-50. PubMed ID: 21281409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro effects of water activity, temperature and solutes on the growth rate of P. italicum Wehmer and P. digitatum Sacc.
    Lahlali R; Serrhini MN; Friel D; Jijakli MH
    J Appl Microbiol; 2006 Sep; 101(3):628-36. PubMed ID: 16907813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodococcus baikonurensis BTM4c, a boron-tolerant actinobacterial strain isolated from soil.
    Yoon J; Miwa H; Ahmed I; Yokota A; Fujiwara T
    Biosci Biotechnol Biochem; 2010; 74(1):178-81. PubMed ID: 20057133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.