These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6076113)

  • 1. Inhibition of polar auxin transport by ethylene.
    Burg SP; Burg EA
    Plant Physiol; 1967 Sep; 42(9):1224-8. PubMed ID: 6076113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport.
    Miyamoto K; Hoshino T; Yamashita M; Ueda J
    Physiol Plant; 2005 Apr; 123(4):467-74. PubMed ID: 15844285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ethylene on auxin transport.
    Abeles FB
    Plant Physiol; 1966 Jun; 41(6):946-8. PubMed ID: 5990936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene and carbon dioxide: mediation of hypocotyl hook-opening response.
    Kang BG; Yocum CS; Burg SP; Ray PM
    Science; 1967 May; 156(3777):958-9. PubMed ID: 6023263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.
    Muday GK; Brady SR; Argueso C; Deruère J; Kieber JJ; DeLong A
    Plant Physiol; 2006 Aug; 141(4):1617-29. PubMed ID: 16798939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays.
    Lee JS; Chang W-K ; Evans ML
    Plant Physiol; 1990; 94(4):1770-5. PubMed ID: 11537475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Close relationships between polar auxin transport and graviresponse in plants.
    Ueda J; Miyamoto K; Uheda E; Oka M; Yano S; Higashibata A; Ishioka N
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():43-9. PubMed ID: 24128007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transport of auxin and regeneration of xylem in okra and pea stems.
    Thompson NP
    Am J Bot; 1970 Apr; 57(4):390-3. PubMed ID: 5440895
    [No Abstract]   [Full Text] [Related]  

  • 9. Auxin-induced ethylene formation: its relation to flowering in the pineapple.
    Burg SP; Burg EA
    Science; 1966 May; 152(3726):1269. PubMed ID: 5937118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxin transport in roots.
    Wilkins MB; Scott TK
    Nature; 1968 Sep; 219(5161):1388-9. PubMed ID: 5678027
    [No Abstract]   [Full Text] [Related]  

  • 11. Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana.
    Fujita H; Syono K
    Plant Cell Physiol; 1996 Dec; 37(8):1094-101. PubMed ID: 9032965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.
    Dawood T; Yang X; Visser EJ; Te Beek TA; Kensche PR; Cristescu SM; Lee S; Floková K; Nguyen D; Mariani C; Rieu I
    Plant Physiol; 2016 Apr; 170(4):2351-64. PubMed ID: 26850278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local Auxin Biosynthesis Is a Key Regulator of Plant Development.
    Brumos J; Robles LM; Yun J; Vu TC; Jackson S; Alonso JM; Stepanova AN
    Dev Cell; 2018 Nov; 47(3):306-318.e5. PubMed ID: 30415657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of transit of auxin from uptake: average velocity and reversible inhibition by anaerobic conditions.
    Goldsmith MH
    Science; 1967 May; 156(3775):661-3. PubMed ID: 6023663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Specificity of the ethylene imine effect on the growth of main pea shoots, and its relation to the mutation process].
    Sharma B
    Zh Obshch Biol; 1967; 28(3):346-9. PubMed ID: 5620248
    [No Abstract]   [Full Text] [Related]  

  • 16. Naphthylphthalamic acid and the mechanism of polar auxin transport.
    Teale W; Palme K
    J Exp Bot; 2018 Jan; 69(2):303-312. PubMed ID: 28992080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinorotation affects morphology and ethylene production in soybean seedlings.
    Hilaire E; Peterson BV; Guikema JA; Brown CS
    Plant Cell Physiol; 1996 Oct; 37(7):929-34. PubMed ID: 11536781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction between auxin and ethylene and its role in plant growth.
    Burg SP; Burg EA
    Proc Natl Acad Sci U S A; 1966 Feb; 55(2):262-9. PubMed ID: 5220945
    [No Abstract]   [Full Text] [Related]  

  • 19. Root Gravitropism Is Regulated by a Crosstalk between
    Nziengui H; Lasok H; Kochersperger P; Ruperti B; Rébeillé F; Palme K; Ditengou FA
    Plant Physiol; 2018 Nov; 178(3):1370-1389. PubMed ID: 30275058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential behavior within a grapevine cluster: decreased ethylene-related gene expression dependent on auxin transport is correlated with low abscission of first developed berries.
    Kühn N; Abello C; Godoy F; Delrot S; Arce-Johnson P
    PLoS One; 2014; 9(11):e111258. PubMed ID: 25365421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.