These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 607757)

  • 1. Trabecular architecture of the knee joint.
    Takechi H
    Acta Orthop Scand; 1977; 48(6):673-81. PubMed ID: 607757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical strength of trabecular bone at the knee.
    Hvid I
    Dan Med Bull; 1988 Aug; 35(4):345-65. PubMed ID: 3048922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A human knee articulate mathematical model on femur-tibia-patella 3-segmetents].
    Wang X; Bai T; Tumer ST; Akkas N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Dec; 15(4):360-2, 368. PubMed ID: 12552780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion-tensor imaging of the growing ends of long bones: pilot demonstration of columnar structure in the physes and metaphyses of the knee.
    Jaimes C; Berman JI; Delgado J; Ho-Fung V; Jaramillo D
    Radiology; 2014 Nov; 273(2):491-501. PubMed ID: 25102295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stresses in the human knee joint.
    Chand R; Haug E; Rim K
    J Biomech; 1976; 9(6):417-22. PubMed ID: 932056
    [No Abstract]   [Full Text] [Related]  

  • 6. A preliminary report of a simple rig to aid study of the functional anatomy of the cadaver human knee joint.
    Harding ML; Harding L; Goodfellow JW
    J Biomech; 1977; 10(8):517-23. PubMed ID: 893485
    [No Abstract]   [Full Text] [Related]  

  • 7. Architecture of the cancellous bone in human proximal tibia based on P45 sectional plastinated specimens.
    Sun SZ; Jiang WB; Song TW; Chi YY; Xu Q; Liu C; Tang W; Xu F; Zhou JX; Yu SB; Sui HJ
    Surg Radiol Anat; 2021 Dec; 43(12):2055-2069. PubMed ID: 34642771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of normal and abnormal knee joint.
    Engin AE; Korde MS
    J Biomech; 1974 Aug; 7(4):325-34. PubMed ID: 4412204
    [No Abstract]   [Full Text] [Related]  

  • 9. A new in vivo technique for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint.
    von Eisenhart-Rothe R; Siebert M; Bringmann C; Vogl T; Englmeier KH; Graichen H
    J Biomech; 2004 Jun; 37(6):927-34. PubMed ID: 15111080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in patellar tracking and knee kinematics among three different total knee designs.
    Chew JT; Stewart NJ; Hanssen AD; Luo ZP; Rand JA; An KN
    Clin Orthop Relat Res; 1997 Dec; (345):87-98. PubMed ID: 9418625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biomechanics of the epiphyseal lines as a guide to design considerations for the attachment of prosthesis to the musculo-skeletal system.
    Bechtol CO
    J Biomed Mater Res; 1973; 7(3):343-62. PubMed ID: 4736926
    [No Abstract]   [Full Text] [Related]  

  • 12. [Mechanics of the knee joint, part II, the final rotation (author's transl)].
    Menschik A
    Z Orthop Ihre Grenzgeb; 1975 Jun; 113(3):388-400. PubMed ID: 1179807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of epiphyses in the skeletally immature knee using magnetic resonance imaging: a pilot study to analyze parameters for anterior cruciate ligament reconstruction.
    Davis DL; Chen L; Young ST
    Am J Sports Med; 2013 Jul; 41(7):1579-85. PubMed ID: 23649007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The infrapatellar fat pad is a dynamic and mobile structure, which deforms during knee motion, and has proximal extensions which wrap around the patella.
    Stephen JM; Sopher R; Tullie S; Amis AA; Ball S; Williams A
    Knee Surg Sports Traumatol Arthrosc; 2018 Nov; 26(11):3515-3524. PubMed ID: 29679117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the role of the patella, ACL and joint contact forces in the extension of the knee.
    Cleather DJ; Southgate DF; Bull AM
    PLoS One; 2014; 9(12):e115670. PubMed ID: 25536067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis of human tibio-femoral joint relative kinematics based on 3D image registration].
    Wang J; Han X; Ji W; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1340-4. PubMed ID: 20095499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a method to map tibiofemoral contact points in the normal knee using MRI.
    Scarvell JM; Smith PN; Refshauge KM; Galloway HR; Woods KR
    J Orthop Res; 2004 Jul; 22(4):788-93. PubMed ID: 15183435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.