BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6078111)

  • 1. Oxidative phosphorylation in Micrococcus dentrificans. II. The properties of pyridine nucleotide transhydrogenase.
    Asano A; Imai K; Sato R
    Biochim Biophys Acta; 1967; 143(3):477-86. PubMed ID: 6078111
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidative phosphorylation in Micrococcus denitrificans. 3. ATP-supported reduction of NAD+ by succinate.
    Asano A; Imai K; Sato R
    J Biochem; 1967 Aug; 62(2):210-4. PubMed ID: 4296888
    [No Abstract]   [Full Text] [Related]  

  • 3. Properties of an oxidative phosphorylation system reconstituted from coupling factors in Micrococcus lysodeikticus.
    Ishikawa S
    J Biochem; 1970 Feb; 67(2):297-312. PubMed ID: 4245665
    [No Abstract]   [Full Text] [Related]  

  • 4. Oxidative phosphorylation coupled to oxygen uptake and nitrate reduction in Micrococcus denitrificans.
    John P; Whatley FR
    Biochim Biophys Acta; 1970 Sep; 216(2):342-52. PubMed ID: 4323434
    [No Abstract]   [Full Text] [Related]  

  • 5. Escherichia coli nicotinamide adenine nucleotide transhydrogenase driven by aerobic oxidation and its enhancement by an energy transfer factor from rat-liver mitochondria.
    Fisher RJ; Lam KW; Sanadi DR
    Biochem Biophys Res Commun; 1970; 39(6):1021-5. PubMed ID: 4397846
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxidative phosphorylation in Micrococcus denitrificans. IV. Further characterization of electron-transfer pathway and phosphorylation activity in NADH oxidation.
    Imai K; Asano A; Sato R
    J Biochem; 1968 Feb; 63(2):207-18. PubMed ID: 4299376
    [No Abstract]   [Full Text] [Related]  

  • 7. Paracoccus denitrificans and the evolutionary origin of the mitochondrion.
    John P; Whatley FR
    Nature; 1975 Apr; 254(5500):495-8. PubMed ID: 235742
    [No Abstract]   [Full Text] [Related]  

  • 8. A microsomal ATP-activated pyridine nucleotide transhydrogenase.
    Hasson EP; West CA
    Arch Biochem Biophys; 1973 Apr; 155(2):258-69. PubMed ID: 4145177
    [No Abstract]   [Full Text] [Related]  

  • 9. Synthalin: an inhibitor of energy transfer in chloroplasts.
    Gross E; Shavit N; San Pietro A
    Arch Biochem Biophys; 1968 Sep; 127(1):224-8. PubMed ID: 5681420
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxidative phosphorylation in Micrococcus denitrificans. I. Preparation and properties of phosphorylating membrane fragments.
    Imai K; Asano A; Sato R
    Biochim Biophys Acta; 1967; 143(3):462-76. PubMed ID: 4229633
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of Factor B in the energy transfer reactions of oxidative phosphorylation.
    Sanadi DR; Lam KW; Kurup CK
    Proc Natl Acad Sci U S A; 1968 Sep; 61(1):277-83. PubMed ID: 4301590
    [No Abstract]   [Full Text] [Related]  

  • 12. A salt-inhibited cytochrome c reductase obtained from the moderately halophilic bacterium, Micrococcus halodenitrificans.
    Miller JE; Hochstein LI
    J Bacteriol; 1972 Oct; 112(1):656-9. PubMed ID: 4342818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory chain and phosphorylation site of the sonicated membrane fragments of Micrococcus lysodeikticus.
    Fujita M; Ishikawa S; Shimazono N
    J Biochem; 1966 Feb; 59(2):104-14. PubMed ID: 4287553
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxidative phosphorylation in Micrococcus denitrificans. V. Effects of iron deficiency on respiratory components and oxidative phosphorylation.
    Imai K; Asano A; Sato R
    J Biochem; 1968 Feb; 63(2):219-25. PubMed ID: 4299377
    [No Abstract]   [Full Text] [Related]  

  • 15. Aerobic and anaerobic respiration in Micrococcus denitrificans.
    Lam Y; Nicholas DJ
    Biochim Biophys Acta; 1969 Apr; 172(3):450-61. PubMed ID: 4388706
    [No Abstract]   [Full Text] [Related]  

  • 16. [Formation of an electrical potential linked to electron transport in the membranous particles of Micrococcus lysodeikticus bacteria and pes chloroplasts].
    Grinius LL; Il'ina MD; Mileĭkovskaia EI; Skulachev VP; Tikhonona GV
    Biokhimiia; 1973; 38(6):1153-62. PubMed ID: 4802005
    [No Abstract]   [Full Text] [Related]  

  • 17. The presence of the glycerol phosphate shuttle and energy dependent transhydrogenase in aortic mitochondria.
    Kalra VK; Brodie AF
    Biochem Biophys Res Commun; 1973 Mar; 51(2):414-20. PubMed ID: 4144323
    [No Abstract]   [Full Text] [Related]  

  • 18. Reconstitution of oxidative phosphorylation and the adenosine triphosphate-dependent transhydrogenase activity by a combination of membrane fractions from unCA- and uncB- mutant strains of Escherichia coli K12.
    Cox GB; Gibson F; McCann L
    Biochem J; 1973 Aug; 134(4):1015-21. PubMed ID: 4271644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the reversibility of the energy-linked transhydrogenase.
    van de Stadt RJ; Nieuwenhuis FJ; van Dam K
    Biochim Biophys Acta; 1971 Apr; 234(1):173-6. PubMed ID: 4397787
    [No Abstract]   [Full Text] [Related]  

  • 20. Specificity of the transhydrogenase factor for chromatophores of Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Konings AW; Guillory RJ
    Biochim Biophys Acta; 1972 Nov; 283(2):334-8. PubMed ID: 4267407
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.