These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 6080534)
1. Difference-differential equations for fluid flow in distensible tubes. Rideout VC; Dick DE IEEE Trans Biomed Eng; 1967 Jul; 14(3):171-7. PubMed ID: 6080534 [No Abstract] [Full Text] [Related]
2. The effect of the skin friction on the solution of the one-dimensional equations of pulsatile flow in distensible tubes. Gerrard JH Med Biol Eng Comput; 1981 Jan; 19(1):79-82. PubMed ID: 7278412 [No Abstract] [Full Text] [Related]
3. ENGINEERING ANALYSIS OF THE HEMODYNAMICS OF THE CIRCLE OF WILLIS. CLARK ME; MARTIN JD; WENGLARZ RA; HIMWICH WA; KNAPP FM Arch Neurol; 1965 Aug; 13():173-82. PubMed ID: 14315669 [No Abstract] [Full Text] [Related]
4. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
5. A theory of fluid flow in compliant tubes. Barnard AC; Hunt WA; Timlake WP; Varley E Biophys J; 1966 Nov; 6(6):717-24. PubMed ID: 5972373 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear analysis of aortic flow in living dogs. Ling SC; Atabek HB; Letzing WG; Patel DJ Circ Res; 1973 Aug; 33(2):198-212. PubMed ID: 4727371 [No Abstract] [Full Text] [Related]
7. Computer prediction of thrombogenic sites for a tilting-disc prosthetic heart valve. Au AD; Greenfield HS Comput Biomed Res; 1977 Apr; 10(2):165-82. PubMed ID: 858233 [No Abstract] [Full Text] [Related]
8. A numerical study of the shape of the surface separating flow into branches in microvascular bifurcations. Enden G; Popel AS J Biomech Eng; 1992 Aug; 114(3):398-405. PubMed ID: 1522734 [TBL] [Abstract][Full Text] [Related]
11. Mathematical concepts of blood flow and blood rheology. Trowbridge EA Life Support Syst; 1984; 2(1):25-38. PubMed ID: 6471908 [No Abstract] [Full Text] [Related]
12. Fluid flow in soft-walled tubes part 1: steady flow. Oates GC Med Biol Eng; 1975 Nov; 13(6):773-9. PubMed ID: 1195867 [No Abstract] [Full Text] [Related]
13. [Venous hemodynamics. Basic equations]. Ribreau C J Mal Vasc; 1989; 14(2):100-6. PubMed ID: 2754344 [TBL] [Abstract][Full Text] [Related]
14. Calculation of pulsatile flow and particle paths in an aneurysm-model. Perktold K; Gruber K; Kenner T; Florian H Basic Res Cardiol; 1984; 79(3):253-61. PubMed ID: 6477378 [TBL] [Abstract][Full Text] [Related]
15. [New hemodynamics based on dynamic rheology]. Hatakeyama I Nihon Rinsho; 1968 Oct; 26(10):2477-86. PubMed ID: 5752017 [No Abstract] [Full Text] [Related]
16. The flow of fluid through the wall of capillary systems studied by a mathematical model. Hantos Z; Lázár Z Acta Physiol Acad Sci Hung; 1970; 38(4):265-80. PubMed ID: 5521444 [No Abstract] [Full Text] [Related]
17. Fluid flow in soft-walled tubes part 2: behaviour of finite waves. Oates GC Med Biol Eng; 1975 Nov; 13(6):780-4. PubMed ID: 1195868 [No Abstract] [Full Text] [Related]
18. ON THE CONCENTRATION GRADIENT ACROSS A SPHERICAL SOURCE WASHED BY SLOW FLOW. JAFFE L Biophys J; 1965 Mar; 5(2):201-10. PubMed ID: 14268954 [TBL] [Abstract][Full Text] [Related]
19. Wave propagation in a viscous fluid contained in an orthotropic elastic tube. Mirsky I Biophys J; 1967 Mar; 7(2):165-86. PubMed ID: 6048869 [TBL] [Abstract][Full Text] [Related]
20. [Digital simulation of the biological flow-reaction absorption systems]. Yokoyama R; Hoshi T; Sato J Iyodenshi To Seitai Kogaku; 1977 Feb; 15(1):23-30. PubMed ID: 559821 [No Abstract] [Full Text] [Related] [Next] [New Search]