These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6082570)

  • 1. Metabolism of amino acids in Agrobacterium tumefaciens. 3. Uptake of L-pro- line.
    Behki RM
    Can J Biochem; 1967 Dec; 45(12):1819-30. PubMed ID: 6082570
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of amino acids in Agrobacterium tumefaciens. II. Uptake of L-valine by growing cells.
    Behki RM; Hochster RM
    Can J Biochem; 1967 Feb; 45(2):165-70. PubMed ID: 6021174
    [No Abstract]   [Full Text] [Related]  

  • 3. Kinetics of 3-methyloproline inhibition of actinomycin biosynthesis.
    Katz E; Krapohl N; Mauger A; Weissbach H; Yoshida T
    Arch Biochem Biophys; 1968 Nov; 128(2):534-53. PubMed ID: 4177246
    [No Abstract]   [Full Text] [Related]  

  • 4. On the mechanism of glucose metabolism in the plant tumor-inducing organism Agrobacterium tumefaciens.
    VARDANIS A; HOCHSTER RM
    Can J Biochem Physiol; 1961 Jul; 39():1165-82. PubMed ID: 13780232
    [No Abstract]   [Full Text] [Related]  

  • 5. Plant GABA:proline ratio modulates dissemination of the virulence Ti plasmid within the Agrobacterium tumefaciens hosted population.
    Lang J; Faure D
    Plant Signal Behav; 2016 May; 11(5):e1178440. PubMed ID: 27110651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative feedback regulation of amino acid transport in Streptomyces hydrogenans.
    Ring K; Gross W; Heinz E
    Arch Biochem Biophys; 1970 Mar; 137(1):243-52. PubMed ID: 5435059
    [No Abstract]   [Full Text] [Related]  

  • 7. Crown-gall and Agrobacterium tumefaciens: survey of a plant-cell-transformation system of interest to medicine and agriculture.
    Knopf UC
    Subcell Biochem; 1979; 6():143-73. PubMed ID: 377583
    [No Abstract]   [Full Text] [Related]  

  • 8. Chemical nature of agrocin 84 and its effect on a virulent strain of Agrobacterium tumefaciens.
    McCardell BA; Pootjes CF
    Antimicrob Agents Chemother; 1976 Sep; 10(3):498-502. PubMed ID: 984792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derepression of a proline transport system in Staphylococcus aureus.
    Obbink DJ; Campbell JJ
    Can J Microbiol; 1973 Apr; 19(4):397-401. PubMed ID: 4700347
    [No Abstract]   [Full Text] [Related]  

  • 10. Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions.
    Cangelosi GA; Hung L; Puvanesarajah V; Stacey G; Ozga DA; Leigh JA; Nester EW
    J Bacteriol; 1987 May; 169(5):2086-91. PubMed ID: 3571162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host-phage interaction on Agrobacterium tumefaciens. IV. Phage-directed protein synthesis.
    Walls PA; Pootjes CF
    J Virol; 1975 Feb; 15(2):372-8. PubMed ID: 1113375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of the L-proline pool of the cestode, Hymenolepis diminuta.
    Kilejian A
    Exp Parasitol; 1966 Dec; 19(3):358-65. PubMed ID: 5960790
    [No Abstract]   [Full Text] [Related]  

  • 13. Active transport of uridine diphosphate glucose in Agrobacterium tumefaciens.
    Fukui S
    J Biochem; 1969 Dec; 66(6):873-6. PubMed ID: 5366997
    [No Abstract]   [Full Text] [Related]  

  • 14. STUDIES ON NITROGEN METABOLISM IN TOBACCO PLANTS. VI. METABOLISM OF GLUTAMIC ACID, GAMMA-AMINOBUTYRIC ACID, AND PROLINE IN TOBACCO LEAVES.
    MIZUSKI S; NOGUCHI M; TAMAKI E
    Arch Biochem Biophys; 1964 Jun; 105():599-605. PubMed ID: 14236646
    [No Abstract]   [Full Text] [Related]  

  • 15. On the active transport of sucrose and of 3-keto-sucrose in Agrobacterium tumefaciens.
    Fukui S; Hochster RM
    Can J Biochem; 1965 Jul; 43(7):1129-41. PubMed ID: 5855652
    [No Abstract]   [Full Text] [Related]  

  • 16. [Correlation between radiosensitivity and unbalanced macromolecular synthesis in Escherichia coli cells].
    Hernádi F; Nagy Zs; Kari Cs; Gábor G
    Mikrobiologiia; 1973; 42(2):458-63. PubMed ID: 4597881
    [No Abstract]   [Full Text] [Related]  

  • 17. TRANSFORMATION OF GLUCOSE TO 3-KETOGLUCOSE WITH THE CELLS OF AGROBACTERIUM TUMEFACIENS.
    FUKUI S
    Biochem Biophys Res Commun; 1965 Jan; 18():186-91. PubMed ID: 14282016
    [No Abstract]   [Full Text] [Related]  

  • 18. D-glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens.
    Chang YF; Feingold DS
    J Bacteriol; 1970 Apr; 102(1):85-96. PubMed ID: 4314480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of Agrobacterium tumefaciens mutants affected in the utilization of octopine, octopinic acid and lysopine.
    Klapwijk PM; Hooykaas PJ; Kester HC; Schilperoort RA; RORSCH A
    J Gen Microbiol; 1976 Sep; 96(1):155-63. PubMed ID: 978177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ribonucleic acids in crown-gall Agrobacterium tumefaciens (Smith and Town) Conn. bacteria exposed to sodium borate].
    Le Goff L
    Ann Inst Pasteur (Paris); 1968 Aug; 115(2):232-48. PubMed ID: 4878338
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.