These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 608281)
21. [Which knee ligaments must be reconstructed in anterior and posterior valgus and varus instability? An experimental study]. Schlepckow VP Beitr Orthop Traumatol; 1990; 37(11-12):588-96. PubMed ID: 2100498 [TBL] [Abstract][Full Text] [Related]
22. The influence of muscle forces and external loads on cruciate ligament strain. Dürselen L; Claes L; Kiefer H Am J Sports Med; 1995; 23(1):129-36. PubMed ID: 7726343 [TBL] [Abstract][Full Text] [Related]
23. Rotational flexibility of the human knee due to varus/valgus and axial moments in vivo. Mills OS; Hull ML J Biomech; 1991; 24(8):673-90. PubMed ID: 1918091 [TBL] [Abstract][Full Text] [Related]
24. An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 1: Secondary Role of the Anterolateral Ligament in the Setting of an Anterior Cruciate Ligament Injury. Rasmussen MT; Nitri M; Williams BT; Moulton SG; Cruz RS; Dornan GJ; Goldsmith MT; LaPrade RF Am J Sports Med; 2016 Mar; 44(3):585-92. PubMed ID: 26684663 [TBL] [Abstract][Full Text] [Related]
25. Length Changes of the Anterolateral Ligament During Passive Knee Motion: A Human Cadaveric Study. Zens M; Niemeyer P; Ruhhammer J; Bernstein A; Woias P; Mayr HO; Südkamp NP; Feucht MJ Am J Sports Med; 2015 Oct; 43(10):2545-52. PubMed ID: 26264771 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of Knee Ligament Mechanics Using Computational Models. Guess TM; Razu S; Jahandar H J Knee Surg; 2016 Feb; 29(2):126-37. PubMed ID: 26800525 [TBL] [Abstract][Full Text] [Related]
27. An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. Fukubayashi T; Torzilli PA; Sherman MF; Warren RF J Bone Joint Surg Am; 1982 Feb; 64(2):258-64. PubMed ID: 7056781 [TBL] [Abstract][Full Text] [Related]
28. Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads. Griffith CJ; Wijdicks CA; LaPrade RF; Armitage BM; Johansen S; Engebretsen L Am J Sports Med; 2009 Jan; 37(1):140-8. PubMed ID: 18725650 [TBL] [Abstract][Full Text] [Related]
29. Instability of cadaver knees after transection of capsule and ligaments. Nielsen S; Kromann-Andersen C; Rasmussen O; Andersen K Acta Orthop Scand; 1984 Feb; 55(1):30-4. PubMed ID: 6702425 [TBL] [Abstract][Full Text] [Related]
30. A model of human knee ligaments in the sagittal plane. Part 2: Fibre recruitment under load. Zavatsky AB; O'Connor JJ Proc Inst Mech Eng H; 1992; 206(3):135-45. PubMed ID: 1482509 [TBL] [Abstract][Full Text] [Related]
31. [Tension changes of the anterior cruciate ligament in the movement process of the knee joint]. Hertel P; Klapp F; Seiler H; Harbauer G Chir Forum Exp Klin Forsch; 1978; (1978):261-5. PubMed ID: 752597 [TBL] [Abstract][Full Text] [Related]
32. The biomechanical function of the anterolateral ligament of the knee. Parsons EM; Gee AO; Spiekerman C; Cavanagh PR Am J Sports Med; 2015 Mar; 43(3):669-74. PubMed ID: 25556221 [TBL] [Abstract][Full Text] [Related]
33. The role of the posterior oblique ligament in controlling posterior tibial translation in the posterior cruciate ligament-deficient knee. Petersen W; Loerch S; Schanz S; Raschke M; Zantop T Am J Sports Med; 2008 Mar; 36(3):495-501. PubMed ID: 18182651 [TBL] [Abstract][Full Text] [Related]
34. An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 2: Anterolateral Ligament Reconstruction Combined With Anterior Cruciate Ligament Reconstruction. Nitri M; Rasmussen MT; Williams BT; Moulton SG; Cruz RS; Dornan GJ; Goldsmith MT; LaPrade RF Am J Sports Med; 2016 Mar; 44(3):593-601. PubMed ID: 26831632 [TBL] [Abstract][Full Text] [Related]
35. Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part I: insertion of the graft and anterior-posterior testing. Markolf KL; Burchfield DM; Shapiro MM; Davis BR; Finerman GA; Slauterbeck JL J Bone Joint Surg Am; 1996 Nov; 78(11):1720-7. PubMed ID: 8934488 [TBL] [Abstract][Full Text] [Related]
36. The posterior cruciate ligament and rotatory knee instability. An experimental study. Nielsen S; Ovesen J; Rasmussen O Arch Orthop Trauma Surg (1978); 1985; 104(1):53-6. PubMed ID: 4038019 [TBL] [Abstract][Full Text] [Related]
37. Posterior cruciate ligament insufficiency. A review of the literature. Barton TM; Torg JS; Das M Sports Med; 1984; 1(6):419-30. PubMed ID: 6390611 [TBL] [Abstract][Full Text] [Related]
38. Increasing posterior tibial slope does not raise anterior cruciate ligament strain but decreases tibial rotation ability. Nelitz M; Seitz AM; Bauer J; Reichel H; Ignatius A; Dürselen L Clin Biomech (Bristol); 2013 Mar; 28(3):285-90. PubMed ID: 23489478 [TBL] [Abstract][Full Text] [Related]
39. The functional relationship of the posterior oblique ligament to the medial collateral ligament of the human knee. Fischer RA; Arms SW; Johnson RJ; Pope MH Am J Sports Med; 1985; 13(6):390-7. PubMed ID: 4073346 [TBL] [Abstract][Full Text] [Related]
40. The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Arms SW; Pope MH; Johnson RJ; Fischer RA; Arvidsson I; Eriksson E Am J Sports Med; 1984; 12(1):8-18. PubMed ID: 6703185 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]