These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 608290)

  • 1. Chondrocyte-to-osteocyte transformation in grafts of perichondrium-free epiphyseal cartilage.
    Kahn AJ; Simmons DJ
    Clin Orthop Relat Res; 1977; (129):299-304. PubMed ID: 608290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated development of embryonic long bone on chorioallantoic membrane in ovo prevents perichondrium-derived suppressive signals against cartilage growth.
    Maeda Y; Noda M
    Bone; 2003 Jan; 32(1):27-34. PubMed ID: 12584033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone formation in cartilage produced by transplanted epiphyseal chondrocytes.
    Thyberg J; Moskalewski S
    Cell Tissue Res; 1979; 204(1):77-94. PubMed ID: 527023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meckel's cartilage chondrocytes in organ culture synthesize bone-type proteins accompanying osteocytic phenotype expression.
    Ishizeki K; Takigawa M; Harada Y; Suzuki F; Nawa T
    Anat Embryol (Berl); 1996 Jan; 193(1):61-71. PubMed ID: 8838497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation.
    Chen Q; Johnson DM; Haudenschild DR; Goetinck PF
    Dev Biol; 1995 Nov; 172(1):293-306. PubMed ID: 7589809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological modifications during long-term survival of Meckel's cartilage hypertrophic chondrocytes transplanted in the mouse spleen.
    Ishizeki K; Kuroda N; Nagano H; Nawa T
    Arch Histol Cytol; 1992 Jul; 55(3):261-72. PubMed ID: 1419276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and use of shell-less quail chorio-allantoic-membrane cultures to study developing skeletal tissues; a qualitative study.
    de Jonge-Strobel GE; Veldhuijzen JP; Vermeiden JW; van de Wijngaert FP; Prahl-Andersen B
    Experientia; 1987 Feb; 43(2):199-200. PubMed ID: 3817105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development relationship between osteocytes and osteoclasts: a study using the quail-chick nuclear marker in endochondral ossification.
    Jotereau FV; Le Douarin NM
    Dev Biol; 1978 Apr; 63(2):253-65. PubMed ID: 346418
    [No Abstract]   [Full Text] [Related]  

  • 9. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of endochondral cartilage growth in the developing avian limb: cooperative involvement of perichondrium and periosteum.
    Di Nino DL; Long F; Linsenmayer TF
    Dev Biol; 2001 Dec; 240(2):433-42. PubMed ID: 11784074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terminal differentiation of osteogenic cells in the embryonic chick tibia is revealed by a monoclonal antibody against osteocytes.
    Bruder SP; Caplan AI
    Bone; 1990; 11(3):189-98. PubMed ID: 2202356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoradiographic studies of the utilization of Ca45 by the chick embryo.
    JOHNSTON PM
    J Biophys Biochem Cytol; 1958 Mar; 4(2):163-8. PubMed ID: 13525429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endochondral resorption of chick sterna in culture.
    Gibson GJ; Lin DL; Schaffler MB; Kimura JH
    J Orthop Res; 1995 Jul; 13(4):542-52. PubMed ID: 7674070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syndecan-3, tenascin-C, and the development of cartilaginous skeletal elements and joints in chick limbs.
    Koyama E; Leatherman JL; Shimazu A; Nah HD; Pacifici M
    Dev Dyn; 1995 Jun; 203(2):152-62. PubMed ID: 7544653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiative ability of the tibial periosteum for the embryonic chick.
    Scott-Savage P; Hall BK
    Acta Anat (Basel); 1980; 106(1):129-40. PubMed ID: 7415784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the origin of the osteoclast by use of transplantation on chick chorioallantoic membrane.
    Yabe H; Hanaoka H
    Clin Orthop Relat Res; 1985; (197):255-65. PubMed ID: 3893829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The behaviour of cells from the distal tips of quail wing buds when grafted back into chick wings after micromass culture.
    Cottrill CP; Crawley A; Tickle C
    Cell Differ Dev; 1990 Jan; 29(1):67-80. PubMed ID: 2302585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A light and electron microscopic study of the limb long bones perichondral ossification in the quail embryo (Coturnix coturnix japonica).
    Pourlis AF; Antonopoulos J; Magras IN
    Ital J Anat Embryol; 2006; 111(3):159-70. PubMed ID: 17312922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane.
    Sariola H; Ekblom P; Lehtonen E; Saxén L
    Dev Biol; 1983 Apr; 96(2):427-35. PubMed ID: 6339300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone formation following intrarenal transplantation of isolated murine chondrocytes: chondrocyte-bone cell transdifferentiation?
    Moskalewski S; Malejczyk J
    Development; 1989 Nov; 107(3):473-80. PubMed ID: 2612374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.