BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6084759)

  • 1. Evidence for a vasodepressor effect of the angiotensin-converting enzyme inhibitor, MK421 (enalapril), independent of blockade of angiotensin II formation.
    Wilkes BM
    J Cardiovasc Pharmacol; 1984; 6(6):1036-42. PubMed ID: 6084759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of angiotensin I-converting enzyme with S 9490: biochemical effects, interspecies differences, and role of sodium diet in hemodynamic effects.
    Laubie M; Schiavi P; Vincent M; Schmitt H
    J Cardiovasc Pharmacol; 1984; 6(6):1076-82. PubMed ID: 6084763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of captopril and enalapril on sodium excretion and blood pressure in sodium-deficient dogs.
    McCaa RE; Gillespie JB
    Fed Proc; 1984 Apr; 43(5):1336-41. PubMed ID: 6323226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of enalapril maleate on blood pressure, renin-angiotensin-aldosterone system, and peripheral sympathetic activity in essential hypertension.
    Cerasola G; Cottone S; D'Ignoto G; Grasso L; Carone MB; Carapelle E; Contorno A
    Clin Ther; 1987; 9(4):390-9. PubMed ID: 3038326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of sodium intake on physiological responses to angiotensin II in conscious dogs.
    Olsen ME; Meydrech EF
    Scand J Urol Nephrol Suppl; 1984; 79():29-34. PubMed ID: 6089315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological properties of the converting enzyme inhibitor, enalapril maleate (MK-421).
    Sweet CS
    Fed Proc; 1983 Feb; 42(2):167-70. PubMed ID: 6295819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dietary sodium on angiotensin-converting enzyme (ACE) inhibition and the acute hypotensive effect of enalapril (MK-421) in essential hypertension.
    Jackson B; Cubela R; Johnston CI
    J Hypertens; 1984 Aug; 2(4):371-7. PubMed ID: 6099390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological responses to angiotensin II infusion during chronic angiotensin converting enzyme inhibition in dogs on normal, low and high sodium intake.
    Olsen ME; Meydrech EF
    J Hypertens; 1985 Oct; 3(5):517-25. PubMed ID: 2999230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Renal adaptation to a restriction of sodium intake in the rat: effects of inhibition of the renin-angiotensin system].
    Jover B; Dupont M; Casellas D; Mimran A
    Arch Mal Coeur Vaiss; 1984 Oct; 77(11):1234-7. PubMed ID: 6098235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antihypertensive therapy with MK 421: angiotensin II--renin relationships to evaluate efficacy of converting enzyme blockade.
    Biollaz J; Brunner HR; Gavras I; Waeber B; Gavras H
    J Cardiovasc Pharmacol; 1982; 4(6):966-72. PubMed ID: 6185790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azotemia during chronic converting enzyme inhibition with enalapril in sodium-depleted rats: role of renal circulatory changes.
    Mento PF; Wilkes BM
    J Cardiovasc Pharmacol; 1986; 8(4):670-5. PubMed ID: 2427802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of angiotensin I converting enzyme inhibition on circulating atrial natriuretic peptide in humans.
    Mann FE; Lang RE; Leidig M; Ritz E
    Klin Wochenschr; 1986; 64 Suppl 6():13-5. PubMed ID: 3025510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute and chronic effects of a novel dihydrobenzofuran analogue and enalapril on blood pressure and plasma and tissue angiotensin converting enzyme activity in the sodium deficient normotensive rat.
    Longman SD; Howlett DR
    Arzneimittelforschung; 1988 May; 38(5):678-82. PubMed ID: 2843192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of inhibition of the maternal renin-angiotensin system on maternal and fetal responses to drainage of fetal fluids.
    Lumbers ER; Bernasconi C; Burrell JH
    Can J Physiol Pharmacol; 1996 Aug; 74(8):973-82. PubMed ID: 8960388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of sodium modulation of glomerular angiotensin receptors in the rat.
    Bellucci A; Wilkes BM
    J Clin Invest; 1984 Nov; 74(5):1593-600. PubMed ID: 6094612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous angiotensin II as a determinant of sodium-modulated changes in tissue responsiveness to angiotensin II in normal man.
    Shoback DM; Williams GH; Hollenberg NK; Davies RO; Moore TJ; Dluhy RG
    J Clin Endocrinol Metab; 1983 Oct; 57(4):764-70. PubMed ID: 6309884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of action of enalapril in experimental hypertension and acute left ventricular failure.
    Sweet CS; Gaul SL; Reitz PM; Blaine EH; Ribeiro LT
    J Hypertens Suppl; 1983 Oct; 1(1):53-63. PubMed ID: 6100609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of converting enzyme inhibitors on plasma angiotensinogen and plasma aldosterone in sodium-depleted rats.
    Clauser E; Gonzalez MF; Bouhnik J; Corvol P; Ménard J
    J Hypertens Suppl; 1983 Oct; 1(1):37-40. PubMed ID: 6100608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the effects of two angiotensin converting enzyme inhibitors, SQ 14 225 and MK 422 in Na-restricted sheep.
    Nelson MA; Stewart KW; Coghlan JP; Denton DA; Fei DT; Scoggins BA
    Clin Exp Pharmacol Physiol Suppl; 1982; 7():87-91. PubMed ID: 6183038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of long-term treatment with enalapril or hydralazine on the renin-angiotensin-aldosterone system and fluid balance in dogs with naturally acquired mitral valve regurgitation.
    Häggström J; Hansson K; Karlberg BE; Kvart C; Madej A; Olsson K
    Am J Vet Res; 1996 Nov; 57(11):1645-52. PubMed ID: 8915446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.