These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6086423)

  • 1. Relationship of polyphosphoinositide metabolism to the hormonal activation of the inset salivary gland by 5-hydroxytryptamine.
    Berridge MJ; Buchan PB; Heslop JP
    Mol Cell Endocrinol; 1984 Jun; 36(1-2):37-42. PubMed ID: 6086423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol.
    Berridge MJ
    Biochem J; 1983 Jun; 212(3):849-58. PubMed ID: 6309155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland.
    Fain JN; Berridge MJ
    Biochem J; 1979 Jan; 178(1):45-58. PubMed ID: 219851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown.
    Litosch I; Wallis C; Fain JN
    J Biol Chem; 1985 May; 260(9):5464-71. PubMed ID: 2985595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphosphoinositide breakdown as the initiating reaction in receptor-stimulated inositol phospholipid metabolism.
    Michell RH
    Life Sci; 1983 May; 32(18):2083-5. PubMed ID: 6302423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5-Methyltryptamine decreases net accumulation of 32P into the polyphosphoinositides from [gamma-32P]ATP in a cell-free system from blowfly salivary glands. Activation of breakdown of the newly synthesized [32P]polyphosphoinositides.
    Litosch I; Calista C; Wallis C; Fain JN
    J Biol Chem; 1986 Jan; 261(2):638-43. PubMed ID: 3001073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides.
    Berridge MJ; Dawson RM; Downes CP; Heslop JP; Irvine RF
    Biochem J; 1983 May; 212(2):473-82. PubMed ID: 6309146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoinositide breakdown in blowfly salivary glands.
    Litosch I; Lee HS; Fain JN
    Am J Physiol; 1984 Jan; 246(1 Pt 1):C141-7. PubMed ID: 6320653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine.
    Berridge MJ; Fain JN
    Biochem J; 1979 Jan; 178(1):59-69. PubMed ID: 435285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-HT-stimulated arachidonic acid release from labeled phosphatidylinositol in blowfly salivary glands.
    Litosch I; Saito Y; Fain JN
    Am J Physiol; 1982 Nov; 243(5):C222-6. PubMed ID: 6814261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of endogenous polyphosphoinositide hydrolysis in human platelet membranes. Evidence that polyphosphoinositides remain inaccessible to phosphodiesterase in the native membrane.
    Plantavid M; Rossignol L; Chap H; Douste-Blazy L
    Biochim Biophys Acta; 1986 Feb; 875(2):147-56. PubMed ID: 3002480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin-induced alterations in inositol phospholipid metabolism in human platelets.
    de Chaffoy de Courcelles D; Roevens P; Wynants J; Van Belle H
    Biochim Biophys Acta; 1987 Feb; 927(2):291-302. PubMed ID: 3028494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands.
    Downes CP; Wusteman MM
    Biochem J; 1983 Dec; 216(3):633-40. PubMed ID: 6320795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common phosphatidylinositol 4,5-bisphosphate pools are involved in carbachol and serotonin activation of tracheal smooth muscle.
    Baron CB; Pompeo J; Blackman D; Coburn RF
    J Pharmacol Exp Ther; 1993 Jul; 266(1):8-15. PubMed ID: 8392564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyphosphoinositides are the major source of inositol phosphates in carbamoylcholine-stimulated SK-N-SH neuroblastoma cells.
    Fisher SK; Heacock AM; Seguin EB; Agranoff BW
    Mol Pharmacol; 1990 Jul; 38(1):54-63. PubMed ID: 2164631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca2+ flux in blowfly salivary glands.
    Fain JN; Berridge MJ
    Biochem J; 1979 Jun; 180(3):655-61. PubMed ID: 486139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of phosphatidylinositol kinase and phosphatidylinositol-4-phosphate kinase by cAMP in Saccharomyces cerevisiae.
    Kato H; Uno I; Ishikawa T; Takenawa T
    J Biol Chem; 1989 Feb; 264(6):3116-21. PubMed ID: 2536734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of phosphoinositide hydrolysis by serotonin in C6 glioma cells.
    Ananth US; Leli U; Hauser G
    J Neurochem; 1987 Jan; 48(1):253-61. PubMed ID: 3025366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of norepinephrine and 5-hydroxytryptamine on phosphoinositide-PO4 turnover in rabbit cornea.
    Akhtar RA
    Exp Eye Res; 1987 Jun; 44(6):849-62. PubMed ID: 2820770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands.
    Berridge MJ; Downes CP; Hanley MR
    Biochem J; 1982 Sep; 206(3):587-95. PubMed ID: 7150264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.