These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 6086855)

  • 1. Sensory, interneuronal, and motor interactions within Hermissenda visual pathway.
    Goh Y; Alkon DL
    J Neurophysiol; 1984 Jul; 52(1):156-69. PubMed ID: 6086855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological characteristics and central projections of two types of interneurons in the visual pathway of Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2002 Jan; 87(1):322-32. PubMed ID: 11784753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes.
    Farley J; Alkon DL
    J Neurophysiol; 1987 Jun; 57(6):1639-68. PubMed ID: 3598626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Input and output changes of an identified neural pathway are correlated with associative learning in Hermissenda.
    Goh Y; Lederhendler I; Alkon DL
    J Neurosci; 1985 Feb; 5(2):536-43. PubMed ID: 3973682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monosynaptic connections between identified A and B photoreceptors and interneurons in Hermissenda: evidence for labeled-lines.
    Crow T; Tian LM
    J Neurophysiol; 2000 Jul; 84(1):367-75. PubMed ID: 10899211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of chemosensory, visual, and statocyst pathways in Hermissenda crassicornis.
    Alkon DL; Akaike T; Harrigan J
    J Gen Physiol; 1978 Feb; 71(2):177-94. PubMed ID: 641519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin-immunoreactive CPT interneurons in Hermissenda: identification of sensory input and motor projections.
    Tian LM; Kawai R; Crow T
    J Neurophysiol; 2006 Jul; 96(1):327-35. PubMed ID: 16641389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interneuronal projections to identified cilia-activating pedal neurons in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2003 May; 89(5):2420-9. PubMed ID: 12740402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statocyst hair cell activation of identified interneurons and foot contraction motor neurons in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2004 Jun; 91(6):2874-83. PubMed ID: 14985407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intersensory interactions in Hermissenda.
    Alkon DL
    J Gen Physiol; 1973 Aug; 62(2):185-202. PubMed ID: 4352950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of 4 light-responsive putative motor neurons in the pedal ganglia of Hermissenda crassicornis.
    Hodgson TM; Crow T
    Brain Res; 1991 Aug; 557(1-2):255-64. PubMed ID: 1747756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreceptors and visual interneurons in the medicinal leech.
    Peterson EL
    J Neurobiol; 1984 Nov; 15(6):413-28. PubMed ID: 6520610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitation of monosynaptic and complex PSPs in type I interneurons of conditioned Hermissenda.
    Crow T; Tian LM
    J Neurosci; 2002 Sep; 22(17):7818-24. PubMed ID: 12196605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural correlates of associative training in Hermissenda.
    Alkon DL
    J Gen Physiol; 1975 Jan; 65(1):46-56. PubMed ID: 1110353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of Pavlovian conditioning in components of the neural network supporting ciliary locomotion in Hermissenda.
    Crow T; Tian LM
    Learn Mem; 2003; 10(3):209-16. PubMed ID: 12773585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Associative learning changes intrinsic to Hermissenda type A photoreceptors.
    Farley J; Richards WG; Grover LM
    Behav Neurosci; 1990 Feb; 104(1):135-52. PubMed ID: 2156519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network interneurons underlying ciliary locomotion in Hermissenda.
    Crow T; Jin NG; Tian LM
    J Neurophysiol; 2013 Feb; 109(3):640-8. PubMed ID: 23155173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food avoidance learning is accompanied by synaptic attenuation in identified interneurons controlling feeding behavior in Pleurobranchaea.
    Kovac MP; Matera EM; Volk PJ; Davis WJ
    J Neurophysiol; 1986 Sep; 56(3):891-905. PubMed ID: 3783224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular, cellular, and circuit mechanisms underlying classical conditioning in Hermissenda crassicornis.
    Blackwell KT
    Anat Rec B New Anat; 2006 Jan; 289(1):25-37. PubMed ID: 16437555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust.
    Reichert H; Rowell CH
    J Neurophysiol; 1985 May; 53(5):1201-18. PubMed ID: 2987432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.