These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 6087068)

  • 1. "Calcium antagonists": a class of drugs with a bright future. Part II. Determination of basic pharmacological properties.
    Spedding M; Cavero I
    Life Sci; 1984 Aug; 35(6):575-87. PubMed ID: 6087068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological in vitro studies of the new 1,4-dihydropyridine calcium antagonist lercanidipine.
    Guarneri L; Angelico P; Ibba M; Poggesi E; Taddei C; Leonardi A; Testa R
    Arzneimittelforschung; 1996 Jan; 46(1):15-24. PubMed ID: 8821512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitor effects of diltiazem, nicardipine, nifedipine and verapamil on the norepinephrine-induced contractions of the canine saphenous vein in calcium-free medium.
    Saïag B; Milon D; Bentue-Ferrer D; Allain H; Rault B; Van den Driessche J
    Res Commun Chem Pathol Pharmacol; 1994 Mar; 83(3):255-69. PubMed ID: 8008975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SR 33557, a novel calcium entry blocker. I. In vitro isolated tissue studies.
    Polster P; Christophe B; Van Damme M; Houlliche A; Chatelain P
    J Pharmacol Exp Ther; 1990 Nov; 255(2):593-9. PubMed ID: 1700816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronotropic, inotropic, and vasodilator actions of diltiazem, nifedipine, and verapamil. A comparative study of physiological responses and membrane receptor activity.
    Millard RW; Grupp G; Grupp IL; DiSalvo J; DePover A; Schwartz A
    Circ Res; 1983 Feb; 52(2 Pt 2):I29-39. PubMed ID: 6831652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of action of calcium antagonists.
    Andersson KE; Högestätt ED
    Acta Med Scand Suppl; 1984; 681():11-24. PubMed ID: 6328899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium antagonists. Some chemical-pharmacologic aspects.
    Triggle DJ; Swamy VC
    Circ Res; 1983 Feb; 52(2 Pt 2):I17-28. PubMed ID: 6299605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium channel antagonists, Part I: Fundamental properties: mechanisms, classification, sites of action.
    Opie LH
    Cardiovasc Drugs Ther; 1987 Dec; 1(4):411-30. PubMed ID: 2856470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation-contraction coupling in cardiac and vascular smooth muscle: modification by calcium-entry blockade.
    McCall D
    Circulation; 1987 Jun; 75(6 Pt 2):V3-14. PubMed ID: 2436829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium antagonistic drugs. Mechanism of action.
    Church J; Zsotér TT
    Can J Physiol Pharmacol; 1980 Mar; 58(3):254-64. PubMed ID: 7378928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological characteristics of NP-252, a new dihydropyridine slow Ca2+ channel blocker, in isolated rabbit vascular smooth muscle and guinea pig myocardium: vascular selectivity.
    Shibata S; Satake N; Kodama I; Hester RK; Wang CG; Jino H; Hojo M; Tatsumi H; Gandhi V; Jones DJ
    Eur J Pharmacol; 1991 Oct; 203(3):337-44. PubMed ID: 1773820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium channel blocking properties of amlodipine in vascular smooth muscle and cardiac muscle in vitro: evidence for voltage modulation of vascular dihydropyridine receptors.
    Burges RA; Gardiner DG; Gwilt M; Higgins AJ; Blackburn KJ; Campbell SF; Cross PE; Stubbs JK
    J Cardiovasc Pharmacol; 1987 Jan; 9(1):110-9. PubMed ID: 2434785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium channel blockade in smooth muscle of the human upper urinary tract. I. Effects on depolarization-induced activation.
    Hertle L; Nawrath H
    J Urol; 1984 Dec; 132(6):1265-9. PubMed ID: 6094847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative pharmacological properties among calcium channel blockers: T-channel versus L-channel blockade.
    Noll G; Lüscher TF
    Cardiology; 1998; 89 Suppl 1():10-5. PubMed ID: 9570424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological basis for the therapeutic applications of slow-channel blocking drugs.
    Singh BN
    Angiology; 1982 Aug; 33(8):492-515. PubMed ID: 7051905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the effects of the calcium entry blockers, verapamil, diltiazem and flunarizine against contractions of the rat isolated aorta and portal vein.
    Marriott JF
    Br J Pharmacol; 1988 Sep; 95(1):145-54. PubMed ID: 3219471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Calcium antagonists": a class of drugs with a bright future. Part I. Cellular calcium homeostasis and calcium as a coupling messenger.
    Cavero I; Spedding M
    Life Sci; 1983 Dec; 33(26):2571-81. PubMed ID: 6319843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium channel antagonists and the treatment of migraine.
    Greenberg DA
    Clin Neuropharmacol; 1986; 9(4):311-28. PubMed ID: 2425960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity of calcium antagonistic action in vascular smooth muscle.
    van Breemen C; Mangel A; Fahim M; Meisheri K
    Am J Cardiol; 1982 Feb; 49(3):507-10. PubMed ID: 6277176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium entry blockade and excitation contraction coupling in the cardiovascular system (with an attempt of pharmacological classification).
    Godfraind T
    Acta Pharmacol Toxicol (Copenh); 1986; 58 Suppl 2():5-30. PubMed ID: 2424268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.