These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 6087199)

  • 21. Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus.
    Zhan XJ; Cox CL; Rinzel J; Sherman SM
    J Neurophysiol; 1999 May; 81(5):2360-73. PubMed ID: 10322072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retinogeniculate transmission in wakefulness.
    Weyand TG
    J Neurophysiol; 2007 Aug; 98(2):769-85. PubMed ID: 17553944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow fluctuations of single unit activities of hippocampal and thalamic neurons in cats. I. Relation to natural sleep and alert states.
    Kodama T; Mushiake H; Shima K; Nakahama H; Yamamoto M
    Brain Res; 1989 May; 487(1):26-34. PubMed ID: 2752287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noradrenergic modulation of retinogeniculate transmission in the cat.
    Funke K; Pape HC; Eysel UT
    J Physiol; 1993 Apr; 463():169-91. PubMed ID: 8246181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dorsal spinocerebellar tract neurons in the chronic intact cat during wakefulness and sleep: analysis of spontaneous spike activity.
    Soja PJ; Fragoso MC; Cairns BE; Jia WG
    J Neurosci; 1996 Feb; 16(3):1260-72. PubMed ID: 8558254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The origin of the S (slow) potential in the mammalian lateral geniculate nucleus.
    Kaplan E; Shapley R
    Exp Brain Res; 1984; 55(1):111-6. PubMed ID: 6086369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states.
    Glenn LL; Steriade M
    J Neurosci; 1982 Oct; 2(10):1387-404. PubMed ID: 7119864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsic and synaptically generated delta (1-4 Hz) rhythms in dorsal lateral geniculate neurons and their modulation by light-induced fast (30-70 Hz) events.
    Nuñez A; Amzica F; Steriade M
    Neuroscience; 1992 Nov; 51(2):269-84. PubMed ID: 1465192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlated variations in EEG pattern and visual responsiveness of cat lateral geniculate relay cells.
    Li B; Funke K; Wörgötter F; Eysel UT
    J Physiol; 1999 Feb; 514 ( Pt 3)(Pt 3):857-74. PubMed ID: 9882756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
    Fisher TG; Alitto HJ; Usrey WM
    J Neurosci; 2017 Jan; 37(1):226-235. PubMed ID: 28053044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the transfer ratio of cat's geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness.
    Coenen AM; Vendrik AJ
    Exp Brain Res; 1972; 14(3):227-42. PubMed ID: 4340696
    [No Abstract]   [Full Text] [Related]  

  • 33. Neuronal activity in the caudolateral peribrachial pons: relationship to PGO waves and rapid eye movements.
    Datta S; Hobson JA
    J Neurophysiol; 1994 Jan; 71(1):95-109. PubMed ID: 8158244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. State-dependency of neuronal slow dynamics during sleep observed in cat lateral geniculate nucleus.
    Nakamura K; Yamamoto M; Takahashi K; Nakao M; Mizutani Y; Katayama N; Kodama T
    Sleep Res Online; 2000; 3(4):147-54. PubMed ID: 11382913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activity of rostral trigeminal sensory neurons in the cat during wakefulness and sleep.
    Cairns BE; Fragoso MC; Soja PJ
    J Neurophysiol; 1995 Jun; 73(6):2486-98. PubMed ID: 7666154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of stimulation of the nucleus reticularis gigantocellularis on the membrane potential of cat lumbar motoneurons during sleep and wakefulness.
    Chase MH; Morales FR; Boxer PA; Fung SJ; Soja PJ
    Brain Res; 1986 Oct; 386(1-2):237-44. PubMed ID: 3779411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Receiver operating characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode.
    Guido W; Lu SM; Vaughan JW; Godwin DW; Sherman SM
    Vis Neurosci; 1995; 12(4):723-41. PubMed ID: 8527372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation.
    Hartveit E; Heggelund P
    J Neurophysiol; 1994 Sep; 72(3):1278-89. PubMed ID: 7807211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A generalized linear model of the impact of direct and indirect inputs to the lateral geniculate nucleus.
    Babadi B; Casti A; Xiao Y; Kaplan E; Paninski L
    J Vis; 2010 Aug; 10(10):22. PubMed ID: 20884487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novelty-induced correlation between visual neurons and the hippocampal theta rhythm in sleep and wakefulness.
    Pedemonte M; Gambini JP; Velluti RA
    Brain Res; 2005 Nov; 1062(1-2):9-15. PubMed ID: 16248987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.