These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6087616)

  • 1. No change in rat cerebral cortex calmodulin content following chronic treatment with lithium, reserpine, imipramine, and lithium combined with reserpine or imipramine.
    Andersen PH; Geisler A; Klysner R
    Acta Pharmacol Toxicol (Copenh); 1984 May; 54(5):394-9. PubMed ID: 6087616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic AMP phosphodiesterase activity in rat brain following chronic treatment with lithium, imipramine, reserpine, and combinations of lithium with imipramine or reserpine.
    Andersen PH; Klysner R; Geisler A
    Acta Pharmacol Toxicol (Copenh); 1983 Oct; 53(4):337-43. PubMed ID: 6316725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forskolin-stimulated adenylate cyclase activity in rat cerebral cortex following chronic treatment with psychotropic drugs.
    Andersen PH; Klysner R; Geisler A
    Acta Pharmacol Toxicol (Copenh); 1984 Oct; 55(4):278-82. PubMed ID: 6542299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of lithium in vitro on noradrenaline-induced cyclic AMP accumulation in rat cortical slices after reserpine-induced supersensitivity.
    Newman ME; Lichtenberg P; Belmaker RH
    Neuropharmacology; 1985 Apr; 24(4):353-5. PubMed ID: 2987730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Norepinephrine and (Na+, K+)-ATPase: evidence for stabilization by lithium or imipramine.
    Swann AC
    Neuropharmacology; 1988 Mar; 27(3):261-7. PubMed ID: 2836750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluoride-stimulated adenylate cyclase activity in rat brain following chronic treatment with psychotropic drugs.
    Andersen PH; Klysner R; Geisler A
    Neuropharmacology; 1984 Apr; 23(4):445-7. PubMed ID: 6728130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influences of reserpine and imipramine on the 5-HT2 receptor binding site and its coupled second messenger in rat cerebral cortex.
    Lee MJ; Wei JW
    Chin J Physiol; 2013 Aug; 56(4):199-208. PubMed ID: 23806035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of treatment with a lithium-imipramine combination on components of adenylate cyclase in the cerebral cortex of the rat.
    Mørk A; Klysner R; Geisler A
    Neuropharmacology; 1990 Mar; 29(3):261-7. PubMed ID: 2109275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of prolonged antidepressant treatment on the changes in cyclic AMP accumulation induced by excitatory amino acids in rat cerebral cortical slices.
    Pilc A; Legutko B
    Neuroreport; 1995 Dec; 7(1):85-8. PubMed ID: 8742423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain differences in changes in some parameters of cerebral cortical adrenergic system following chronic imipramine administration to rats.
    Vetulani J; Nalepa I; Popik P
    Pol J Pharmacol Pharm; 1991; 43(3):187-95. PubMed ID: 1660132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of chronic imipramine and electroconvulsive shock treatment on [3H]DADLE binding to cortical membranes of rats pretreated with chronic reserpine or 6-hydroxydopamine.
    Antkiewicz-Michaluk L; Michaluk J; Rokosz-Pelc A; Marona-Lewicka D; Vetulani J
    Pharmacol Biochem Behav; 1987 Feb; 26(2):203-6. PubMed ID: 3033693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noradrenergic subsensitivity and supersensitivity of the cerebral cortex after reserpine treatment.
    Palmer DS; French SW; Narod ME
    J Pharmacol Exp Ther; 1976 Jan; 196(1):167-71. PubMed ID: 173828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of cyclic AMP accumulation by alpha 2-adrenoceptors in the rat cerebral cortex.
    Kuno N; Kamisaki Y; Itoh T
    Eur J Pharmacol; 1990 Feb; 176(3):281-7. PubMed ID: 1970302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition by antibiotic tetracyclines of rat cortical noradrenergic adenylate cyclase and amphetamine-induced hyperactivity.
    Kofman O; Klein E; Newman M; Hamburger R; Kimchi O; Nir T; Shimon H; Belmaker RH
    Pharmacol Biochem Behav; 1990 Nov; 37(3):417-24. PubMed ID: 1965041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of minocycline on accumulation of cyclic AMP in cerebral cortex of rat. A comparison with lithium.
    Mørk A; Geisler A
    Neuropharmacology; 1993 Aug; 32(8):793-8. PubMed ID: 8413842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-adrenergic receptors in rat cerebellum after neonatal X-irradiation: effect of prolonged imipramine and lithium treatment.
    Türck M; Yeh H; Woodward DJ; Schultz JE
    Neurosci Lett; 1981 Dec; 27(3):357-62. PubMed ID: 6276829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification by psychotropic drugs of the cyclic AMP response to norepinephrine in the rat brain in vitro.
    Palmer GC; Robison GA; Manian AA; Sulser F
    Psychopharmacologia; 1972; 23(3):201-11. PubMed ID: 4337411
    [No Abstract]   [Full Text] [Related]  

  • 18. Psychoactive drug effects on a system which generates cyclic AMP in brain.
    Schultz J
    Nature; 1976 Jun; 261(5559):417-8. PubMed ID: 180412
    [No Abstract]   [Full Text] [Related]  

  • 19. Different mechanisms of beta-adrenoceptor down-regulation by chronic imipramine and electroconvulsive treatment: possible role for protein kinase C.
    Nalepa I; Vetulani J
    J Neurochem; 1991 Sep; 57(3):904-10. PubMed ID: 1650396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo or in vitro exposure to imipramine reduces alpha 2-adrenoceptor-mediated inhibition of cyclic AMP production in rat brain cerebral cortical slices.
    Nomura S; Duman RS; Enna SJ
    Brain Res; 1987 Apr; 410(1):195-8. PubMed ID: 2884021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.