These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 6087927)
1. [The effect of the external electric field on Ca2+ transport in the sarcoplasmic reticulum]. Pechatnikov VA; Pletnev VV Biofizika; 1984; 29(3):438-41. PubMed ID: 6087927 [TBL] [Abstract][Full Text] [Related]
2. [Changes in the intensity of the fluorescence of potential-sensitive fluorescent probes in the active transport of Ca2+ in the fragmented sarcoplasmic reticulum]. Usatiuk PV; Tugaĭ VA Biofizika; 1985; 30(3):450-4. PubMed ID: 4027274 [TBL] [Abstract][Full Text] [Related]
3. [Transmembrane potential formation upon ATP hydrolysis in sarcoplasmic reticulum]. Pechatnikov VA; Ivkova MN; Rizvanov FF; Pletnev VV Biofizika; 1979; 24(3):476-83. PubMed ID: 157168 [TBL] [Abstract][Full Text] [Related]
4. Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles. Meissner G J Biol Chem; 1981 Jan; 256(2):636-43. PubMed ID: 7451464 [TBL] [Abstract][Full Text] [Related]
5. [Effect of gradients of monovalent cations on active transport of Ca2+ in the sarcoplasmic reticulum and proteoliposomes]. Tugaĭ VA; Diadiusha GP; Usatiuk PV; Zemlianaia NN Ukr Biokhim Zh (1978); 1988; 60(1):69-74. PubMed ID: 3363678 [TBL] [Abstract][Full Text] [Related]
6. Calcium transport and release by the sarcoplasmic reticulum. Katz AM; Shigekawa M; Repke DI; Hasselbach W Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():205-12. PubMed ID: 22900 [TBL] [Abstract][Full Text] [Related]
7. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake. Ueno T; Sekine T J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434 [TBL] [Abstract][Full Text] [Related]
8. [Effect of acetycholine on the Ca2+ transport system in sarcoplasmic reticulum of frog skeletal muscle]. Esyrev OV; Uspanova ZhK Vopr Med Khim; 1976; 22(1):21-5. PubMed ID: 1035991 [TBL] [Abstract][Full Text] [Related]
9. Alterations of membrane potential and Ca2+ flux of sarcoplasmic reticulum vesicles in ischemic myocardium. Peng CF; Straub KD; Murphy ML Ann Clin Lab Sci; 1983; 13(6):511-20. PubMed ID: 6318650 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence changes of the potential-sensitive merocyanine 540 during Ca transport in sarcoplasmic reticulum. Haeyaert P; Verdonck F; Wuytack F Arch Int Pharmacodyn Ther; 1980 Apr; 244(2):333-5. PubMed ID: 7406591 [No Abstract] [Full Text] [Related]
12. Optical probe responses on sarcoplasmic reticulum: oxacarbocyanines as probes of membrane potential. Beeler T; Russell JT; Martonosi A Eur J Biochem; 1979 Apr; 95(3):579-91. PubMed ID: 376313 [TBL] [Abstract][Full Text] [Related]
13. [Modification of an enzymic system of Ca2+ transport in sarcoplasmic reticulum membranes during lipid peroxidation. Molecular mechanisms responsible for increased membrane permeability for Ca2+]. Kagan VE; Arkhipenko IuV; Ritov VB; Kozlov IuP Biokhimiia; 1983; 48(2):320-30. PubMed ID: 6301563 [No Abstract] [Full Text] [Related]
14. [Cause of increase in the efficiency of Ca2+ transport by fragments of sarcoplasmic reticulum from fast skeletal muscles induced by protein kinase]. Avakian EA; Ritov VB; Kozlov IuP Biokhimiia; 1980 Apr; 45(4):601-8. PubMed ID: 6246973 [TBL] [Abstract][Full Text] [Related]
16. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. II. H+ ejection during Ca2+ uptake. Ueno T; Sekine T J Biochem; 1981 Apr; 89(4):1247-52. PubMed ID: 6265435 [TBL] [Abstract][Full Text] [Related]
17. [Passive Ca2+ fluxes across the membrane of sarcoplasmatic reticulum of skeletal muscles. The effect of calcium channel blockers]. Diadiusha GP; Tugaĭ VA; Zemlianaia NN; Zakharchenko AN Biokhimiia; 1988 May; 53(5):832-7. PubMed ID: 3167125 [TBL] [Abstract][Full Text] [Related]