BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 6087985)

  • 1. Increase of calmodulin-stimulated striatal particulate phosphorylation response in chronic haloperidol-treated rats.
    Lau YS
    Brain Res; 1984 Jul; 307(1-2):181-9. PubMed ID: 6087985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic haloperidol treatment increased calcium-dependent phosphorylation in rat striatum.
    Lau YS; Gnegy ME
    Life Sci; 1982 Jan; 30(1):21-8. PubMed ID: 6275231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of calmodulin-dependent phosphorylation in chronic sulpiride-induced striatal dopamine receptor supersensitivity.
    Lau YS; Runice C; Dowd F
    J Pharmacol Exp Ther; 1984 Apr; 229(1):32-7. PubMed ID: 6323689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased sensitivity of adenylate cyclase activity in the striatum of the rat to calmodulin and GppNHp after chronic treatment with haloperidol.
    Treisman GJ; Muirhead N; Gnegy ME
    Neuropharmacology; 1986 Jun; 25(6):587-95. PubMed ID: 3092124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of Ca2+/calmodulin- and Ca2+/phosphatidylserine-stimulated phosphoproteins in rat striatum.
    Lau YS
    Neurochem Res; 1990 Mar; 15(3):265-72. PubMed ID: 2114570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuously infusing quinpirole decreases Ca2+/calmodulin-dependent phosphorylation in mouse striatum.
    Zhang SP; Zhou LW; Natsukari N; Weiss B
    Neurochem Int; 1993 Oct; 23(4):361-72. PubMed ID: 8220178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced amphetamine- and K+-mediated dopamine release in rat striatum after repeated amphetamine: differential requirements for Ca2+- and calmodulin-dependent phosphorylation and synaptic vesicles.
    Kantor L; Hewlett GH; Gnegy ME
    J Neurosci; 1999 May; 19(10):3801-8. PubMed ID: 10234012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Ca2+ -dependent phosphorylation in viable dispersed brain cells with calmodulin-dependent protein kinase activity in cell-free preparations of rat brain.
    Norling LL; Landt M
    Biochem J; 1985 Dec; 232(3):629-35. PubMed ID: 4091815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of calmodulin and dopaminergic activity in the striatum.
    Gnegy ME
    Fed Proc; 1982 May; 41(7):2273-7. PubMed ID: 6122610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the involvement of Ca2+-calmodulin and cyclic AMP in the regulation of the tyrosine hydroxylase system in rat striatal tissue slices.
    Hirata Y; Nagatsu T
    Biochem Pharmacol; 1985 Aug; 34(15):2637-43. PubMed ID: 2861820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of zinc on calmodulin-stimulated protein kinase II and protein phosphorylation in rat cerebral cortex.
    Weinberger RP; Rostas JA
    J Neurochem; 1991 Aug; 57(2):605-14. PubMed ID: 1649255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haloperidol and MK-801 block increases in striatal calmodulin resulting from repeated amphetamine treatment.
    Gnegy ME; Hewlett GH; Pimputkar G
    Brain Res; 1996 Sep; 734(1-2):35-42. PubMed ID: 8896805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent protein kinases associated with the rat cerebral synaptic junction: comparison with cyclic AMP-dependent and Ca2+/calmodulin-dependent protein kinases in the synaptic junction.
    Suzuki T; Fujii T; Tanaka R
    J Neurochem; 1987 Jun; 48(6):1716-24. PubMed ID: 3033148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated haloperidol increases both calmodulin and a calmodulin-binding protein in rat striatum.
    Gnegy ME; Agrawal A; Hewlett K; Yeung E; Yee S
    Brain Res Mol Brain Res; 1994 Dec; 27(2):195-204. PubMed ID: 7898303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-regulated phosphorylation in synaptosomal cytosol: dependence on calmodulin.
    O'Callaghan JP; Dunn LA; Lovenberg W
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5812-6. PubMed ID: 6934513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca++/calmodulin-regulated protein phosphorylation in the Aplysia nervous system.
    Novak-Hofer I; Levitan IB
    J Neurosci; 1983 Mar; 3(3):473-81. PubMed ID: 6298378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K+-dependent stimulation of tyrosine hydroxylation in striatal slices: role of Ca2+/calmodulin and Ca2+/phospholipid-dependent mechanisms.
    Knorr AM; Wolf ME; Roth RH
    Biochem Pharmacol; 1986 Jun; 35(12):1929-32. PubMed ID: 2872896
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of EGTA-washed synaptosomal membrane with emphasis on its calmodulin-binding proteins. Demonstration of possible reconstitution with added calcium/calmodulin.
    Natsukari N; Uezato T; Ohta H; Fujita M
    Biochim Biophys Acta; 1992 Jan; 1133(2):193-205. PubMed ID: 1310053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca(2+)-dependent enhancement of [3H]dopamine uptake in rat striatum: possible involvement of calmodulin-dependent kinases.
    Uchikawa T; Kiuchi Y; Yura A; Nakachi N; Yamazaki Y; Yokomizo C; Oguchi K
    J Neurochem; 1995 Nov; 65(5):2065-71. PubMed ID: 7595491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein phosphorylation in nerve terminals: comparison of calcium/calmodulin-dependent and calcium/diacylglycerol-dependent systems.
    Wang JK; Walaas SI; Greengard P
    J Neurosci; 1988 Jan; 8(1):281-8. PubMed ID: 3276830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.