These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6087995)

  • 1. Direct evidence for postsynaptic inhibition in the embryonic chick spinal cord.
    Velumian AA
    Brain Res; 1984 Jun; 316(2):229-39. PubMed ID: 6087995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat.
    Enríquez-Denton M; Nielsen J; Perreault MC; Morita H; Petersen N; Hultborn H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):623-37. PubMed ID: 10922013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacologic analysis of inhibition produced by last-order intermediate nucleus interneurons mediating nonreciprocal inhibition of motoneurons in cat spinal cord.
    Rudomin P; Jiménez I; Quevedo J; Solodkin M
    J Neurophysiol; 1990 Jan; 63(1):147-60. PubMed ID: 2299379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of GABA and glycine in recurrent inhibition of spinal motoneurons.
    Schneider SP; Fyffe RE
    J Neurophysiol; 1992 Aug; 68(2):397-406. PubMed ID: 1326603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms that initiate spontaneous network activity in the developing chick spinal cord.
    Wenner P; O'Donovan MJ
    J Neurophysiol; 2001 Sep; 86(3):1481-98. PubMed ID: 11535692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of spinal reflex pathways from muscle afferents to motoneurones in chick embryos devoid of descending inputs.
    Ozaki S; Kudo N
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):137-46. PubMed ID: 7853217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular recordings from embryonic chick motoneurones in the isolated perfused spinal cord.
    Velumian AA
    Brain Res; 1981 Dec; 229(2):502-6. PubMed ID: 6272942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of spinal motor networks in the chick embryo.
    O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W
    J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of an interneuronal population that mediates recurrent inhibition of motoneurons in the developing chick spinal cord.
    Wenner P; O'Donovan MJ
    J Neurosci; 1999 Sep; 19(17):7557-67. PubMed ID: 10460262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of lesions in the neural crest on the formation of synaptic connexions in the embryonic chick spinal cord.
    Eide AL; Jansen JK; Ribchester RR
    J Physiol; 1982 Mar; 324():453-78. PubMed ID: 6212673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motoneurone activity in an isolated spinal cord preparation from the adult mouse.
    Fulton BP
    Neurosci Lett; 1986 Nov; 71(2):175-80. PubMed ID: 3024074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trisynaptic inhibition from the contralateral vertical semicircular canal nerves to neck motoneurons mediated by spinal commissural neurons.
    Sugiuchi Y; Izawa Y; Shinoda Y
    J Neurophysiol; 1995 May; 73(5):1973-87. PubMed ID: 7623095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The contribution of glycine and GABA(A) receptors to generation of the inhibitory postsynaptic potentials in the frog spinal cord motoneurones].
    Kurchavyĭ GG; Kalinina NI; Veselkin NP
    Ross Fiziol Zh Im I M Sechenova; 2010 Jun; 96(6):553-65. PubMed ID: 20795472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional organization of the spinal reflex pathways from forelimb afferents to hindlimb motoneurones in the cat. II. Conditions of the interneuronal connections.
    Schomburg ED; Steffens H; Warneke G
    Brain Res; 1986 Jun; 375(2):280-90. PubMed ID: 3015331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity patterns and synaptic organization of ventrally located interneurons in the embryonic chick spinal cord.
    Ritter A; Wenner P; Ho S; Whelan PJ; O'Donovan MJ
    J Neurosci; 1999 May; 19(9):3457-71. PubMed ID: 10212306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tonic and phasic synaptic input to spinal cord motoneurons during fictive locomotion in frog embryos.
    Soffe SR; Roberts A
    J Neurophysiol; 1982 Dec; 48(6):1279-88. PubMed ID: 6296327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord.
    Dale N
    J Physiol; 1985 Jun; 363():61-70. PubMed ID: 4020706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic inhibition of accessory motoneurons evoked by stimulation of the trigeminal nerve in the cat.
    Nishimura Y; Asahara T; Higuchi K; Tanaka T
    Brain Res; 1992 Jul; 585(1-2):291-4. PubMed ID: 1511312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dorsal spinocerebellar tract neurons are not subjected to postsynaptic inhibition during carbachol-induced motor inhibition.
    Xi MC; Yamuy J; Liu RH; Morales FR; Chase MH
    J Neurophysiol; 1997 Jul; 78(1):137-44. PubMed ID: 9242268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.