BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 6088470)

  • 21. Complete analysis of the cytochrome components of beef heart mitochondria in terms of spectra and redox properties. The b-type cytochromes.
    Reddy KV; Hendler RW
    J Biol Chem; 1983 Jul; 258(14):8568-81. PubMed ID: 6863301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Four different b-type cytochromes in the halophilic archaebacterium, Halobacterium halobium.
    Hallberg Gradin C; Colmsjö A
    Arch Biochem Biophys; 1989 Jul; 272(1):130-6. PubMed ID: 2735759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The interrelation of the two c-type cytochromes in Rhodopseudomonas sphaeroides photosynthesis.
    Wood PM
    Biochem J; 1980 Nov; 192(2):761-4. PubMed ID: 6263260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectroscopic and kinetic characterization of the recombinant cytochrome c reductase fragment of nitrate reductase. Identification of the rate-limiting catalytic step.
    Ratnam K; Shiraishi N; Campbell WH; Hille R
    J Biol Chem; 1997 Jan; 272(4):2122-8. PubMed ID: 8999912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffusion-potential-induced oxidation and reduction of cytochromes in chromatophores from Rhodopseudomonas sphaeroides.
    Matsuura K; Nishimura M
    J Biochem; 1978 Sep; 84(3):539-46. PubMed ID: 214426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subfractionation and characterization of soluble c-type cytochromes from Paracoccus denitrificans cultured under various limiting conditions in the chemostat.
    Bosma G; Braster M; Stouthamer AH; van Verseveld HW
    Eur J Biochem; 1987 Jun; 165(3):665-70. PubMed ID: 3036513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The EPR spectra of the cytochrome b-c1 complex of Rhodopseudomonas sphaeroides.
    Salerno JC; McCurley JP; Dong JH; Doyle MF; Yu L; Yu CA
    Biochem Biophys Res Commun; 1986 Apr; 136(2):616-21. PubMed ID: 3010986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The pH dependence of the oxidation-reduction midpoint potential of cytochromes c2 in vivo.
    Prince RC; Dutton PL
    Biochim Biophys Acta; 1977 Mar; 459(3):573-7. PubMed ID: 14684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation-reduction titration of cytochrome components in the electron transport chaim of Azotobacter vinelandii.
    Yang T
    Can J Biochem; 1981 Feb; 59(2):137-44. PubMed ID: 6263427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneous pools of cytochrome c2 in photo-denitrifying cells of Rhodobacter sphaeroides forma sp. denitrificans.
    Matsuura K; Hori M; Satoh T
    J Biochem; 1988 Dec; 104(6):1016-20. PubMed ID: 2854121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The redox potentials of the b-type cytochromes of higher plant chloroplasts.
    Rich PR; Bendall DS
    Biochim Biophys Acta; 1980 Jun; 591(1):153-61. PubMed ID: 7388012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Second order kinetics of the reduction of cytochrome c2 by the ubiquinone cytochrome b-c2 oxidoreductase of Rhodopseudomonas sphaeroides.
    Prince RC; Bashford CL; Takamiya KI; van den Berg WH; Dutton PL
    J Biol Chem; 1978 Jun; 253(12):4137-42. PubMed ID: 207691
    [No Abstract]   [Full Text] [Related]  

  • 33. Do photosynthetic bacteria contain cytochrome c1?
    Wood PM
    Biochem J; 1980 Sep; 189(3):385-91. PubMed ID: 6260080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation-reduction properties of the cytochrome b found in the plasma-membrane fraction of human neutrophils. A possible oxidase in the respiratory burst.
    Cross AR; Jones OT; Harper AM; Segal AW
    Biochem J; 1981 Feb; 194(2):599-606. PubMed ID: 7306004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobile cytochrome c2 and membrane-anchored cytochrome cy are both efficient electron donors to the cbb3- and aa3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides.
    Daldal F; Mandaci S; Winterstein C; Myllykallio H; Duyck K; Zannoni D
    J Bacteriol; 2001 Mar; 183(6):2013-24. PubMed ID: 11222600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha.
    Berks BC; Richardson DJ; Robinson C; Reilly A; Aplin RT; Ferguson SJ
    Eur J Biochem; 1994 Feb; 220(1):117-24. PubMed ID: 8119278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple forms of cytochrome b in the electron transport system of Propionibacterium shermanii.
    Asmundson RV; Pritchard GG
    Arch Microbiol; 1983 Dec; 136(4):285-90. PubMed ID: 6667088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the reduction of selenate and tellurite by nitrate reductases.
    Sabaty M; Avazeri C; Pignol D; Vermeglio A
    Appl Environ Microbiol; 2001 Nov; 67(11):5122-6. PubMed ID: 11679335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH dependence of the oxidation-reduction potential of cytochrome c2.
    Pettigrew GW; Meyer TE; Bartsch RG; Kamen MD
    Biochim Biophys Acta; 1976 May; 430(2):197-208. PubMed ID: 6058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of cytochrome c with reaction centers of Rhodopseudomonas sphaeroides R-26: determination of number of binding sites and dissociation constants by equilibrium dialysis.
    Rosen D; Okamura MY; Feher G
    Biochemistry; 1980 Dec; 19(25):5687-92. PubMed ID: 6257286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.