BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6088529)

  • 1. A novel mutation selectively decreases complex I and cytochrome c oxidase subunits in Chinese hamster mitochondria.
    Malczewski RM; Whitfield CD
    J Biol Chem; 1984 Sep; 259(17):11103-13. PubMed ID: 6088529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated mitochondrial RNA in a Chinese hamster mutant deficient in the mitochondrially encoded subunits of NADH dehydrogenase and cytochrome c oxidase.
    Whitfield CD; Jefferson LM
    J Biol Chem; 1990 Nov; 265(31):18852-9. PubMed ID: 1699938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiration-defective Chinese hamster cell mutants containing low levels of NADH-ubiquinone reductase and cytochrome c oxidase.
    Malczewski RM; Whitfield CD
    J Biol Chem; 1982 Jul; 257(14):8137-42. PubMed ID: 6282874
    [No Abstract]   [Full Text] [Related]  

  • 4. Site of synthesis of the mitochondrial cytochromes in hepatocyte cultures.
    Wilson G; Hodges R; Hare JF
    J Biol Chem; 1981 May; 256(10):5197-203. PubMed ID: 6262320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of NADH: ubiquinone reductase (complex I) in Neurospora mitochondria. Independent pathways of nuclear-encoded and mitochondrially encoded subunits.
    Tuschen G; Sackmann U; Nehls U; Haiker H; Buse G; Weiss H
    J Mol Biol; 1990 Jun; 213(4):845-57. PubMed ID: 2141652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of mitochondrial succinate: ubiquinone reductase, cytochrome c reductase and cytochrome c oxidase from Neurospora crassa using nonionic detergent.
    Weiss H; Kolb HJ
    Eur J Biochem; 1979 Aug; 99(1):139-49. PubMed ID: 226365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome c oxidase subunits in nuclear and extranuclear cytochrome-aa3-deficient mutants of Neurospora crassa.
    Bertrand H; Werner S
    Eur J Biochem; 1979 Jul; 98(1):9-18. PubMed ID: 223848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase.
    Pilkington SJ; Skehel JM; Gennis RB; Walker JE
    Biochemistry; 1991 Feb; 30(8):2166-75. PubMed ID: 1900194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome c oxidase from bakers' yeast. IV. Immunological evidence for the participation of a mitochondrially synthesized subunit in enzymatic activity.
    Poyton RO; Schatz G
    J Biol Chem; 1975 Jan; 250(2):762-6. PubMed ID: 163234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-mediated transfer of complex I genes into three different respiration-deficient Chinese hamster mutant cell lines with defects in complex I of electron transport chain.
    Garnett KE; Simmons WA; Wing MS; Breen GA
    Somat Cell Mol Genet; 1985 Jul; 11(4):345-52. PubMed ID: 3927493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of cytochrome c oxidase subunits in nuclear yeast mutants lacking the functional enzyme.
    Cabral F; Schatz G
    J Biol Chem; 1978 Jun; 253(12):4396-401. PubMed ID: 207698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex.
    Schulte U; Haupt V; Abelmann A; Fecke W; Brors B; Rasmussen T; Friedrich T; Weiss H
    J Mol Biol; 1999 Sep; 292(3):569-80. PubMed ID: 10497022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogenesis of mitochondrial ubiquinol:cytochrome c reductase (cytochrome bc1 complex). Precursor proteins and their transfer into mitochondria.
    Teintze M; Slaughter M; Weiss H; Neupert W
    J Biol Chem; 1982 Sep; 257(17):10364-71. PubMed ID: 6286652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa3 complexes.
    Berry EA; Trumpower BL
    J Biol Chem; 1985 Feb; 260(4):2458-67. PubMed ID: 2982819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative resolution of succinate-cytochrome c reductase into succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Yu L; Yu CA
    J Biol Chem; 1982 Feb; 257(4):2016-21. PubMed ID: 6276404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heme is necessary for the accumulation and assembly of cytochrome c oxidase subunits in Saccharomyces cerevisiae.
    Saltzgaber-Müller J; Schatz G
    J Biol Chem; 1978 Jan; 253(1):305-10. PubMed ID: 201622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrity of mitochondria in a mammalian cell mutant defective in mitochondrial protein synthesis.
    Burnett KG; Scheffler IE
    J Cell Biol; 1981 Jul; 90(1):108-15. PubMed ID: 6265473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells.
    Seo BB; Kitajima-Ihara T; Chan EK; Scheffler IE; Matsuno-Yagi A; Yagi T
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9167-71. PubMed ID: 9689052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoprecipitation of human NADH: ubiquinone oxidoreductase and cytochrome-c oxidase with single subunit-specific antibodies.
    Mariottini P; Chomyn A
    Methods Enzymol; 1995; 260():202-10. PubMed ID: 8592445
    [No Abstract]   [Full Text] [Related]  

  • 20. Deficiency of subunits in heart mitochondrial NADH-ubiquinone oxidoreductase of a patient with mitochondrial encephalomyopathy and cardiomyopathy.
    Tanaka M; Nishikimi M; Suzuki H; Ozawa T; Nishizawa M; Tanaka K; Miyatake T
    Biochem Biophys Res Commun; 1986 Oct; 140(1):88-93. PubMed ID: 3022724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.