These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 608947)

  • 21. Redneck, a new mutant of the axolotl (Ambystoma mexicanum) likely affects the development of cranial neural crest.
    Smith SC; Bashir NS; Armstrong JB
    Int J Dev Biol; 2001 Jun; 45(4):685-8. PubMed ID: 11461006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the endocardium and cardiac jelly in truncal development in the cardiac lethal mutant axolotl Ambystoma mexicanum.
    Lemanski LF; Fitzharris TP
    J Morphol; 1989 May; 200(2):123-30. PubMed ID: 2724338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of mutagenic damage following ethyl methanesulfonate mutagenesis in the axolotl (Ambystoma mexicanum).
    Armstrong JB; Fletcher WS
    J Exp Zool; 1983 Jun; 226(3):333-40. PubMed ID: 6886657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo protein synthesis in developing hearts of normal and cardiac mutant axolotls (Ambystoma mexicanum).
    Erginel-Unaltuna N; Dube DK; Robertson DR; Lemanski LF
    Cell Mol Biol Res; 1995; 41(3):181-7. PubMed ID: 8589758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrical activity in cardiac mutant axolotl hearts.
    Epstein ML; Lemanski LF
    J Exp Zool; 1980 Feb; 211(2):131-6. PubMed ID: 7373269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A scanning electron microscopy and histological study on the effects of the mutant eyeless (e/e) gene upon the hypothalamus in the Mexican axolotl Ambystoma mexicanum Shaw.
    Eagleson GW; Malacinski GM
    Anat Rec; 1986 Jul; 215(3):317-27. PubMed ID: 2426993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: differences in cell morphology, arrangement, and extracellular matrix as related to migration.
    Spieth J; Keller RE
    J Exp Zool; 1984 Jan; 229(1):91-107. PubMed ID: 6699590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrastructure of Merkel cell development in aneurogenic and control amphibian larvae (Ambystoma).
    Tweedle CD
    Neuroscience; 1978; 3(4-5):481-6. PubMed ID: 683507
    [No Abstract]   [Full Text] [Related]  

  • 29. The role of thyroid hormone in zebrafish and axolotl development.
    Brown DD
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13011-6. PubMed ID: 9371791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: time-lapse cinemicrographic analysis of pigment cell movement in vivo and in culture.
    Keller RE; Spieth J
    J Exp Zool; 1984 Jan; 229(1):109-26. PubMed ID: 6699589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies of muscle proteins in embryonic myocardial cells of cardiac lethal mutant mexican axolotls (Ambystoma mexicanum) by use of heavy meromyosin binding and sodium dodecyl sulfate polyacrylamide gel electrophoresis.
    Lemanski LF; Mooseker MS; Peachey LD; Iyengar MR
    J Cell Biol; 1976 Feb; 68(2):375-88. PubMed ID: 1107335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of Ambystoma.
    Christensen RN; Weinstein M; Tassava RA
    Dev Dyn; 2002 Mar; 223(2):193-203. PubMed ID: 11836784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of spastic: a neurological mutant of the Mexican axolotl.
    Ide CF; Miszkowski N; Kimmel CB; Schabtach E; Tompkins R; Elbert O; Duda M
    Prog Clin Biol Res; 1977; 15():267-89. PubMed ID: 928456
    [No Abstract]   [Full Text] [Related]  

  • 34. The pigmentary system of developing axolotls. I. A biochemical and structural analysis of chromatophores in wild-type axolotls.
    Frost SK; Epp LG; Robinson SJ
    J Embryol Exp Morphol; 1984 Jun; 81():105-25. PubMed ID: 6470605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The axolotl limb: a model for bone development, regeneration and fracture healing.
    Hutchison C; Pilote M; Roy S
    Bone; 2007 Jan; 40(1):45-56. PubMed ID: 16920050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variable manifestations in the short toes (s) mutation of the axolotl.
    Washabaugh CH; Del Rio-Tsonis K; Tsonis PA
    J Morphol; 1993 Oct; 218(1):107-114. PubMed ID: 29865473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleotide sequence of a cDNA encoding Wnt-1 of the Mexican axolotl Ambystoma mexicanum.
    Busse U; Guay J; Séguin C
    Nucleic Acids Res; 1991 Feb; 19(4):981. PubMed ID: 2017393
    [No Abstract]   [Full Text] [Related]  

  • 38. The regeneration of axolotl limbs covered by frog skin.
    Carlson BM
    Dev Biol; 1982 Apr; 90(2):435-40. PubMed ID: 7042417
    [No Abstract]   [Full Text] [Related]  

  • 39. Developmental and interactive effects of arsenic and chromium to developing Ambystoma maculatum embryos: Toxicity, teratogenicity, and whole-body concentrations.
    Gardner S; Cline G; Mwebi N; Rayburn J
    J Toxicol Environ Health A; 2017; 80(2):91-104. PubMed ID: 28085642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA from normal anterior endoderm/mesoderm-conditioned medium stimulates myofibrillogenesis in developing mutant axolotl hearts.
    LaFrance SM; Fransen ME; Erginel-Unaltuna N; Dube DK; Robertson DR; Stefanu C; Ray TK; Lemanski LF
    Cell Mol Biol Res; 1993; 39(6):547-60. PubMed ID: 7516783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.