BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6089663)

  • 1. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene.
    Schocken MJ; Gibson DT
    Appl Environ Microbiol; 1984 Jul; 48(1):10-6. PubMed ID: 6089663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes.
    Shimada T; Takenaka S; Murayama N; Yamazaki H; Kim JH; Kim D; Yoshimoto FK; Guengerich FP; Komori M
    Chem Res Toxicol; 2015 Feb; 28(2):268-78. PubMed ID: 25642975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of 13C nuclear magnetic resonance to assess fossil fuel biodegradation: fate of [1-13C]acenaphthene in creosote polycyclic aromatic compound mixtures degraded by bacteria.
    Selifonov SA; Chapman PJ; Akkerman SB; Gurst JE; Bortiatynski JM; Nanny MA; Hatcher PG
    Appl Environ Microbiol; 1998 Apr; 64(4):1447-53. PubMed ID: 9546181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of acenaphthene by Sphingobacterium sp. strain RTSB involving trans-3-carboxy-2-hydroxybenzylidenepyruvic acid as a metabolite.
    Mallick S
    Chemosphere; 2019 Mar; 219():748-755. PubMed ID: 30557732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4.
    Pinyakong O; Habe H; Kouzuma A; Nojiri H; Yamane H; Omori T
    FEMS Microbiol Lett; 2004 Sep; 238(2):297-305. PubMed ID: 15358414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal metabolism of acenaphthene by Cunninghamella elegans.
    Pothuluri JV; Freeman JP; Evans FE; Cerniglia CE
    Appl Environ Microbiol; 1992 Nov; 58(11):3654-9. PubMed ID: 1482186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial degradation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene by a pure bacterial culture.
    Komatsu T; Omori T; Kodama T
    Biosci Biotechnol Biochem; 1993 May; 57(5):864-5. PubMed ID: 7763783
    [No Abstract]   [Full Text] [Related]  

  • 8. Novel intermediates of acenaphthylene degradation by Rhizobium sp. strain CU-A1: evidence for naphthalene-1,8-dicarboxylic acid metabolism.
    Poonthrigpun S; Pattaragulwanit K; Paengthai S; Kriangkripipat T; Juntongjin K; Thaniyavarn S; Petsom A; Pinphanichakarn P
    Appl Environ Microbiol; 2006 Sep; 72(9):6034-9. PubMed ID: 16957226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of acenaphthylene via 1,2-dihydroxynaphthalene and catechol by Stenotrophomonas sp. RMSK.
    Nayak AS; Veeranagouda Y; Lee K; Karegoudar TB
    Biodegradation; 2009 Nov; 20(6):837-43. PubMed ID: 19543983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of hydroxyl radicals and ozone with acenaphthene and acenaphthylene.
    Reisen F; Arey J
    Environ Sci Technol; 2002 Oct; 36(20):4302-11. PubMed ID: 12387402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene.
    Mahaffey WR; Gibson DT; Cerniglia CE
    Appl Environ Microbiol; 1988 Oct; 54(10):2415-23. PubMed ID: 2462407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the metabolic pathway involved in assimilation of acenaphthene in Acinetobacter sp. strain AGAT-W.
    Ghosal D; Dutta A; Chakraborty J; Basu S; Dutta TK
    Res Microbiol; 2013; 164(2):155-63. PubMed ID: 23178176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of dibenzothiophene by a Beijerinckia species.
    Laborde AL; Gibson DT
    Appl Environ Microbiol; 1977 Dec; 34(6):783-90. PubMed ID: 596875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2-dioxygenase.
    Selifonov SA; Grifoll M; Eaton RW; Chapman PJ
    Appl Environ Microbiol; 1996 Feb; 62(2):507-14. PubMed ID: 16535238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering cytochrome P450 BM-3 for oxidation of polycyclic aromatic hydrocarbons.
    Li QS; Ogawa J; Schmid RD; Shimizu S
    Appl Environ Microbiol; 2001 Dec; 67(12):5735-9. PubMed ID: 11722930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial and fungal oxidation of dibenzofuran.
    Cerniglia CE; Morgan JC; Gibson DT
    Biochem J; 1979 Apr; 180(1):175-85. PubMed ID: 486097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas- and Particle-Phase Products from the Chlorine-Initiated Oxidation of Polycyclic Aromatic Hydrocarbons.
    Riva M; Healy RM; Flaud PM; Perraudin E; Wenger JC; Villenave E
    J Phys Chem A; 2015 Nov; 119(45):11170-81. PubMed ID: 26472257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of polycyclic aromatic hydrocarbons by fungal isolates from an oil contaminated refinery soil.
    Zheng Z; Obbard JP
    Environ Sci Pollut Res Int; 2003; 10(3):173-6. PubMed ID: 12846378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1.
    Kelley I; Freeman JP; Evans FE; Cerniglia CE
    Appl Environ Microbiol; 1993 Mar; 59(3):800-6. PubMed ID: 8481006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.
    Grifoll M; Selifonov SA; Gatlin CV; Chapman PJ
    Appl Environ Microbiol; 1995 Oct; 61(10):3711-23. PubMed ID: 7487007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.