These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6089764)

  • 21. Copper transfer from Rhus vernicifera laccase.
    Meadows KA; Morie-Bebel MM; McMillin DR
    J Inorg Biochem; 1991 Mar; 41(4):253-60. PubMed ID: 1647440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases.
    Ferraroni M; Myasoedova NM; Schmatchenko V; Leontievsky AA; Golovleva LA; Scozzafava A; Briganti F
    BMC Struct Biol; 2007 Sep; 7():60. PubMed ID: 17897461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron transfer and reaction mechanism of laccases.
    Jones SM; Solomon EI
    Cell Mol Life Sci; 2015 Mar; 72(5):869-83. PubMed ID: 25572295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneity of the Type 3 copper in Japanese-lacquer-tree (Rhus vernicifera) laccase.
    Morpurgo L; Desideri A; Rotilio G
    Biochem J; 1982 Dec; 207(3):625-7. PubMed ID: 6299275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-site interactions enhances intramolecular electron transfer in Streptomyces coelicolor laccase.
    Farver O; Tepper AW; Wherland S; Canters GW; Pecht I
    J Am Chem Soc; 2009 Dec; 131(51):18226-7. PubMed ID: 19968274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct observation by EPR of a reductively decoupled type 3 site in type 2 copper depleted laccase.
    Frank P; Pecht I
    Biochem Biophys Res Commun; 1983 Jul; 114(1):57-64. PubMed ID: 6309174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elucidation of the crystal structure of Coriolopsis caperata laccase: restoration of the structure and activity of the native enzyme from the T2-depleted form by copper ions.
    Glazunova OA; Polyakov KM; Fedorova TV; Dorovatovskii PV; Koroleva OV
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):854-61. PubMed ID: 25849396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of the laccase from Coprinus cinereus at 1.68 A resolution: evidence for different 'type 2 Cu-depleted' isoforms.
    Ducros V; Brzozowski AM; Wilson KS; Ostergaard P; Schneider P; Svendson A; Davies GJ
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):333-6. PubMed ID: 11173497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability of Japanese-lacquer-tree (Rhus vernicifera) laccase to thermal and chemical denaturation: comparison with ascorbate oxidase.
    Agostinelli E; Cervoni L; Giartosio A; Morpurgo L
    Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):697-702. PubMed ID: 7702562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of Fresh Sap Collected from Ryukyu Lacquer Tree.
    Lu R; Honda T; Sung M; Jung J; Miyakoshi T
    Anal Sci; 2017; 33(11):1253-1257. PubMed ID: 29129864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New method for removing type 2 copper from Rhus laccase.
    Klemens AS; McMillin DR
    J Inorg Biochem; 1990 Feb; 38(2):107-15. PubMed ID: 2324732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper.
    Reinhammar B; Oda Y
    J Inorg Biochem; 1979 Oct; 11(2):115-27. PubMed ID: 228004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of substrate reorganization energies of electron transfer to laccase activity.
    Mehra R; Kepp KP
    Phys Chem Chem Phys; 2019 Jul; 21(28):15805-15814. PubMed ID: 31282513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The phenoloxidases of the ascomycete Podospora anserina. XI. The state of copper of laccases I, II and III.
    Molitoris HP; Reinhammar B
    Biochim Biophys Acta; 1975 Apr; 386(2):493-502. PubMed ID: 166666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An electron paramagnetic resonance method for quantification of copper isotopes in proteins: application to a mixed-isotope derivative of laccase.
    Miller C; Fajardo J; Antholine WE; McMillin DR
    Anal Biochem; 1995 May; 227(1):69-72. PubMed ID: 7668393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The removal of the type-2 copper from Rhus vernicifera laccase.
    Li J; McMillin DR
    Biochim Biophys Acta; 1992 Dec; 1160(3):239-45. PubMed ID: 1477094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ferritin 2 domain-containing protein found in lacquer tree (Toxicodendron vernicifluum) sap has negative effects on laccase and peroxidase reactions.
    Kitajima S; Imamura T; Iibushi J; Ikenaga M; Tachibana Y; Andoh N; Oyabu H; Hirooka K; Shiina T; Ishizaki Y
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1165-1175. PubMed ID: 28485213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode.
    Shleev S; Christenson A; Serezhenkov V; Burbaev D; Yaropolov A; Gorton L; Ruzgas T
    Biochem J; 2005 Feb; 385(Pt 3):745-54. PubMed ID: 15453829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intramolecular electron transfer in ascorbate oxidase is enhanced in the presence of oxygen.
    Farver O; Wherland S; Pecht I
    J Biol Chem; 1994 Sep; 269(37):22933-6. PubMed ID: 8083190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.