These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 6089881)
21. Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. Imai T; Ohno T J Biotechnol; 1995 Jan; 38(2):165-72. PubMed ID: 7765807 [TBL] [Abstract][Full Text] [Related]
22. Effects of inhibitors of plasma-membrane ATPase on potassium and calcium fluxes, membrane potential and proton motive force in the yeast Saccharomyces cerevisiae. Eilam Y; Lavi H; Grossowicz N Microbios; 1984; 41(165-166):177-89. PubMed ID: 6099460 [TBL] [Abstract][Full Text] [Related]
23. Membrane potentials in yeast cells measured by direct and indirect methods. Vacata V; Kotyk A; Sigler K Biochim Biophys Acta; 1981 Apr; 643(1):265-8. PubMed ID: 7016192 [TBL] [Abstract][Full Text] [Related]
24. The mechanism of intracellular acidification induced by glucose in Saccharomyces cerevisiae. Ramos S; Balbín M; Raposo M; Valle E; Pardo LA J Gen Microbiol; 1989 Sep; 135(9):2413-22. PubMed ID: 2697747 [TBL] [Abstract][Full Text] [Related]
25. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses. Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074 [TBL] [Abstract][Full Text] [Related]
26. Characterization of Ca(2+)/H(+) exchange in the plasma membrane of Saccharomyces cerevisiae. Hong S; Cong X; Jing H; Xia Z; Huang X; Hu X; Jiang X Arch Biochem Biophys; 2013 Sep; 537(1):125-32. PubMed ID: 23871844 [TBL] [Abstract][Full Text] [Related]
27. Protonmotive force in yeasts--pH, buffer and species dependence. Kotyk A; Georghiou G Biochem Int; 1991 Jul; 24(4):641-7. PubMed ID: 1665969 [TBL] [Abstract][Full Text] [Related]
28. [Use of the fluorescence method to detect and quantitatively determine lipids in the cells of microorganisms]. Pomoshchnikova NA; Medvedeva GA; Levchenko NF; Meĭsel' MN; Krasovitskiĭ BM Mikrobiologiia; 1981; 50(1):176-82. PubMed ID: 7012555 [TBL] [Abstract][Full Text] [Related]
29. Proton Transport and pH Control in Fungi. Kane PM Adv Exp Med Biol; 2016; 892():33-68. PubMed ID: 26721270 [TBL] [Abstract][Full Text] [Related]
30. pH recovery from intracellular alkalinization in Retzius neurones of the leech central nervous system. Frey G; Schlue WR J Physiol; 1993 Mar; 462():627-43. PubMed ID: 8331595 [TBL] [Abstract][Full Text] [Related]
31. Effects of alkaline buffers on cytoplasmic pH in lymphocytes. Bjerneroth G; Sammeli O; Li YC; Wiklund L Crit Care Med; 1994 Oct; 22(10):1550-6. PubMed ID: 7924364 [TBL] [Abstract][Full Text] [Related]
32. Studies on calcium efflux in the yeast Saccharomyces cerevisiae. Eilam Y Microbios; 1982; 35(140):99-110. PubMed ID: 6761554 [TBL] [Abstract][Full Text] [Related]
33. Factors governing substrate-induced generation and extrusion of protons in the yeast Saccharomyces cerevisiae. Sigler K; Knotková A; Kotyk A Biochim Biophys Acta; 1981 May; 643(3):572-82. PubMed ID: 6264954 [TBL] [Abstract][Full Text] [Related]
34. Glucose- and K(+)-induced acidification in different yeast species. Kotyk A; Lapathitis G; Krenková S Folia Microbiol (Praha); 1999; 44(3):295-8. PubMed ID: 10664885 [TBL] [Abstract][Full Text] [Related]
35. Effects of yeast suspension density on the accumulation ratio of transported solutes. Kotyk A Yeast; 1987 Dec; 3(4):263-70. PubMed ID: 3332977 [TBL] [Abstract][Full Text] [Related]
36. [Inorganic pyrophosphate synthesis by the mitochondria of the yeast-like fungus Endomyces magnusii coupled with the work of the respiratory chain]. Mansurova SE; Ermakova SA; Zviagil'skaia RA; Kulaev IS Mikrobiologiia; 1975; 44(5):874-9. PubMed ID: 173978 [TBL] [Abstract][Full Text] [Related]
37. Membrane transport in an osmotically fragile mutant of Saccharomyces cerevisiae. Kotyk A; Venkov P; Dvoráková M Yeast; 1988 Dec; 4(4):241-7. PubMed ID: 2851235 [TBL] [Abstract][Full Text] [Related]
38. Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Cherepanov DA; Junge W; Mulkidjanian AY Biophys J; 2004 Feb; 86(2):665-80. PubMed ID: 14747306 [TBL] [Abstract][Full Text] [Related]
39. Fluctuations in surface pH of maturing rat incisor enamel are a result of cycles of H(+)-secretion by ameloblasts and variations in enamel buffer characteristics. Damkier HH; Josephsen K; Takano Y; Zahn D; Fejerskov O; Frische S Bone; 2014 Mar; 60():227-34. PubMed ID: 24373736 [TBL] [Abstract][Full Text] [Related]
40. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells. Kuno M; Li G; Moriura Y; Hino Y; Kawawaki J; Sakai H Pflugers Arch; 2016 May; 468(5):837-47. PubMed ID: 26843093 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]