These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 6089889)
1. Thermodynamic and kinetic properties of electrogenic ion pumps. Läuger P Biochim Biophys Acta; 1984 Sep; 779(3):307-41. PubMed ID: 6089889 [No Abstract] [Full Text] [Related]
2. A channel mechanism for electrogenic ion pumps. Läuger P Biochim Biophys Acta; 1979 Mar; 552(1):143-61. PubMed ID: 35228 [TBL] [Abstract][Full Text] [Related]
3. The unitary hypothesis on the coupling of energy transduction and its relevance to the modeling of mechanisms. Bennun A Ann N Y Acad Sci; 1974 Feb; 227():116-45. PubMed ID: 4275116 [No Abstract] [Full Text] [Related]
4. Reconstitution of the energy transformer, gate and channel subunit reassembly, crystalline ATPase and ATP synthesis. Kagawa Y Biochim Biophys Acta; 1978 Sep; 505(1):45-93. PubMed ID: 30482 [No Abstract] [Full Text] [Related]
5. Osmoenzymology: the study of molecular machines. Mitchell P Prog Clin Biol Res; 1982; 102 Pt B():399-408. PubMed ID: 6219397 [No Abstract] [Full Text] [Related]
6. Electrogenic ion pumps. Keynes RD Ann N Y Acad Sci; 1974 Feb; 227():207-10. PubMed ID: 4275119 [No Abstract] [Full Text] [Related]
7. A kinetic study of the energy storing enzyme-product complex in the hydrolysis of ATP by heavy meromyosin. Yamada T; Shimizu H; Suga H Biochim Biophys Acta; 1973 Jun; 305(3):642-53. PubMed ID: 4270154 [No Abstract] [Full Text] [Related]
8. A molecular mechanism of energy transduction at a cytochrome level. Marbach G; Vignais PM J Theor Biol; 1975 Oct; 54(2):335-43. PubMed ID: 128662 [No Abstract] [Full Text] [Related]
9. Thermodynamics and kinetics of electrogenic pumps. Chapman JB Soc Gen Physiol Ser; 1984; 38():17-32. PubMed ID: 6320457 [No Abstract] [Full Text] [Related]
10. On the electron transfer reaction between ferricytochrome c and ferrohexacyanide in the pH range 5 to 7. Zabinski RM; Tatti K; Czerlinski GH J Biol Chem; 1974 Oct; 249(19):6125-9. PubMed ID: 4371032 [No Abstract] [Full Text] [Related]
11. Barrier models for the description of proton transport across membranes. Läuger P Methods Enzymol; 1986; 127():465-71. PubMed ID: 2426560 [No Abstract] [Full Text] [Related]
12. [Transport mechanisms across the biological membranes]. Hamasaki N Rinsho Byori; 1991 Sep; Suppl 91():47-58. PubMed ID: 1721939 [No Abstract] [Full Text] [Related]
13. The proton-translocating pumps of oxidative phosphorylation. Fillingame RH Annu Rev Biochem; 1980; 49():1079-113. PubMed ID: 6157352 [No Abstract] [Full Text] [Related]
14. Conformational model for ion permeation in membrane channels: a comparison with multi-ion models and applications to calcium channel permeability. Mironov SL Biophys J; 1992 Aug; 63(2):485-96. PubMed ID: 1384738 [TBL] [Abstract][Full Text] [Related]
15. Phase transitions and coupling in energy transducing membranes. Rottenberg H FEBS Lett; 1978 Oct; 94(2):295-7. PubMed ID: 151639 [No Abstract] [Full Text] [Related]
16. The energy level associated with the light-triggered Mg 2+ -dependent ATPase in spinach chloroplasts. Bakker-Grunwald T; van Dam K Biochim Biophys Acta; 1973 Apr; 292(3):808-14. PubMed ID: 4267500 [No Abstract] [Full Text] [Related]
18. Incorporation of membrane potential into theoretical analysis of electrogenic ion pumps. Reynolds JA; Johnson EA; Tanford C Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6869-73. PubMed ID: 2413447 [TBL] [Abstract][Full Text] [Related]
19. Hypothesis on the role of liganded states of proteins in energy transducing systems. Bennun A Biosystems; 1975 Oct; 7(2):230-44. PubMed ID: 1121 [TBL] [Abstract][Full Text] [Related]
20. Functions of subunits of H+-ATPase. Kagawa Y; Ohta S; Yoshida M; Sone N Ann N Y Acad Sci; 1980; 358():103-17. PubMed ID: 6259984 [No Abstract] [Full Text] [Related] [Next] [New Search]