These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 6089924)
1. Coupling between fluxes in one-particle pores with fluctuating energy profiles. A theoretical study. Ciani S Biophys J; 1984 Aug; 46(2):249-52. PubMed ID: 6089924 [TBL] [Abstract][Full Text] [Related]
2. On a novel rate theory for transport in narrow ion channels and its application to the study of flux optimization via geometric effects. Abad E; Reingruber J; Sansom MS J Chem Phys; 2009 Feb; 130(8):085101. PubMed ID: 19256626 [TBL] [Abstract][Full Text] [Related]
3. Ion transport in the simplest single file pore. Urban BW; Hladky SB Biochim Biophys Acta; 1979 Jul; 554(2):410-29. PubMed ID: 486451 [TBL] [Abstract][Full Text] [Related]
4. Flux, coupling, and selectivity in ionic channels of one conformation. Chen DP; Eisenberg RS Biophys J; 1993 Aug; 65(2):727-46. PubMed ID: 7693003 [TBL] [Abstract][Full Text] [Related]
5. Multioccupancy models for single filing ionic channels: theoretical behavior of a four-site channel with three barriers separating the sites. Sandblom J; Eisenman G; Hägglund J J Membr Biol; 1983; 71(1-2):61-78. PubMed ID: 6300407 [TBL] [Abstract][Full Text] [Related]
6. Effect of interactions on molecular fluxes and fluctuations in the transport across membrane channels. Kolomeisky AB; Kotsev S J Chem Phys; 2008 Feb; 128(8):085101. PubMed ID: 18315084 [TBL] [Abstract][Full Text] [Related]
7. A channel model with fluctuating barrier structures. Nieto-Frausto J; Kleutsch B Biochim Biophys Acta; 1992 Oct; 1111(1):81-92. PubMed ID: 1382602 [TBL] [Abstract][Full Text] [Related]
8. Exact continuum solution for a channel that can be occupied by two ions. Levitt DG Biophys J; 1987 Sep; 52(3):455-66. PubMed ID: 2443193 [TBL] [Abstract][Full Text] [Related]
9. Effect of pore structure on energy barriers and applied voltage profiles. II. Unsymmetrical channels. Jordan PC Biophys J; 1984 Jun; 45(6):1101-7. PubMed ID: 6331540 [TBL] [Abstract][Full Text] [Related]
10. Conformational model for ion permeation in membrane channels: a comparison with multi-ion models and applications to calcium channel permeability. Mironov SL Biophys J; 1992 Aug; 63(2):485-96. PubMed ID: 1384738 [TBL] [Abstract][Full Text] [Related]
11. Linear network representation of multistate models of transport. Sandblom J; Ring A; Eisenman G Biophys J; 1982 May; 38(2):93-104. PubMed ID: 7093425 [TBL] [Abstract][Full Text] [Related]
12. Statistical mechanical equilibrium theory of selective ion channels. Roux B Biophys J; 1999 Jul; 77(1):139-53. PubMed ID: 10388746 [TBL] [Abstract][Full Text] [Related]
13. Stochastic theory of singly occupied ion channels. II. Effects of access resistance and potential gradients extending into the bath. Chiu SW; Jakobsson E Biophys J; 1989 Jan; 55(1):147-57. PubMed ID: 2467695 [TBL] [Abstract][Full Text] [Related]
14. Transmembrane electrical potential of excitable membranes: a pore analysis influence of surface charges and surface dipoles. Gavach C J Physiol (Paris); 1981 May; 77(9):1029-33. PubMed ID: 6286954 [TBL] [Abstract][Full Text] [Related]
15. [Mathematical model of electrogenic transport through biomembranes via oligomeric channels capable of conformational transitions]. Markevich NI Biofizika; 1979; 24(6):1064-9. PubMed ID: 508821 [TBL] [Abstract][Full Text] [Related]
16. Channel opening process is responsible for the slow component in the flux measurement of membrane vesicles. Kasai M; Nunogaki K J Theor Biol; 1993 Apr; 161(4):461-80. PubMed ID: 7692181 [TBL] [Abstract][Full Text] [Related]
17. General continuum theory for multiion channel. I. Theory. Levitt DG Biophys J; 1991 Feb; 59(2):271-7. PubMed ID: 1706949 [TBL] [Abstract][Full Text] [Related]
18. Microscopic model for selective permeation in ion channels. Wu J Biophys J; 1991 Jul; 60(1):238-51. PubMed ID: 1715765 [TBL] [Abstract][Full Text] [Related]
19. Electromechanical coupling model of gating the large mechanosensitive ion channel (MscL) of Escherichia coli by mechanical force. Gu L; Liu W; Martinac B Biophys J; 1998 Jun; 74(6):2889-902. PubMed ID: 9635742 [TBL] [Abstract][Full Text] [Related]
20. Study of ionic currents across a model membrane channel using Brownian dynamics. Chung SH; Hoyles M; Allen T; Kuyucak S Biophys J; 1998 Aug; 75(2):793-809. PubMed ID: 9675181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]