These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 6090139)
1. Magnetic resonance studies on the interaction of metal-ion and nucleotide ligands with brain hexokinase. Jarori GK; Mehta A; Kasturi SR; Kenkare UW Eur J Biochem; 1984 Sep; 143(3):669-76. PubMed ID: 6090139 [TBL] [Abstract][Full Text] [Related]
2. Mapping of glucose and glucose-6-phosphate binding sites on bovine brain hexokinase. A 1H- and 31P-NMR investigation. Jarori GK; Iyer SB; Kasturi SR; Kenkare UW Eur J Biochem; 1990 Feb; 188(1):9-14. PubMed ID: 2318206 [TBL] [Abstract][Full Text] [Related]
3. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II). Buy C; Girault G; Zimmermann JL Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962 [TBL] [Abstract][Full Text] [Related]
4. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase. Petersen RL; Gupta BK Biophys J; 1979 Jul; 27(1):1-14. PubMed ID: 233578 [TBL] [Abstract][Full Text] [Related]
5. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme. Legler PM; Lee HC; Peisach J; Mildvan AS Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828 [TBL] [Abstract][Full Text] [Related]
6. Brain hexokinase has no preexisting allosteric site for glucose 6-phosphate. Mehta A; Jarori GK; Kenkare UW J Biol Chem; 1988 Oct; 263(30):15492-7. PubMed ID: 3170594 [TBL] [Abstract][Full Text] [Related]
7. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies. Villafranca JJ; Ash DE; Wedler FC Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828 [TBL] [Abstract][Full Text] [Related]
8. Structure of the oxalate-ATP complex with pyruvate kinase: ATP as a bridging ligand for the two divalent cations. Lodato DT; Reed GH Biochemistry; 1987 Apr; 26(8):2243-50. PubMed ID: 3040085 [TBL] [Abstract][Full Text] [Related]
9. Interactions of phospho- and dephosphosuccinyl coenzyme A synthetase with manganous ion and substrates. Studies of manganese complexes by NMR relaxation rates of water protons. Buttlaire DH; Chon M J Biol Chem; 1977 Mar; 252(6):1957-64. PubMed ID: 321448 [TBL] [Abstract][Full Text] [Related]
10. Magnetic resonance studies of specificity in binding and catalysis of phosphotransferases. Cohn M Ciba Found Symp; 1975; (31):87-104. PubMed ID: 168046 [TBL] [Abstract][Full Text] [Related]
11. Magnetic resonance studies on interaction of bovine brain hexokinase with manganous ion, glucose, and glucose 6-phosphate. Jarori GK; Kasturi SR; Kenkare UW Arch Biochem Biophys; 1981 Oct; 211(1):258-68. PubMed ID: 6272642 [No Abstract] [Full Text] [Related]
12. Rat brain hexokinase: location of the substrate nucleotide binding site in a structural domain at the C-terminus of the enzyme. Nemat-Gorgani M; Wilson JE Arch Biochem Biophys; 1986 Nov; 251(1):97-103. PubMed ID: 3789748 [TBL] [Abstract][Full Text] [Related]
13. Electron paramagnetic resonance and water proton relaxation rate studies of formyltetrahydrofolate synthetase-manganous ion complexes. Evidence for involvement of substrates in the promotion of a catalytically competent active site. Buttlaire DH; Reed GH; Himes R J Biol Chem; 1975 Jan; 250(1):261-70. PubMed ID: 166989 [TBL] [Abstract][Full Text] [Related]
14. Dual divalent cation requirement of the MutT dGTPase. Kinetic and magnetic resonance studies of the metal and substrate complexes. Frick DN; Weber DJ; Gillespie JR; Bessman MJ; Mildvan AS J Biol Chem; 1994 Jan; 269(3):1794-803. PubMed ID: 8294428 [TBL] [Abstract][Full Text] [Related]
15. Glutamine synthetase from ovine brain is a manganese(II) enzyme. Wedler FC; Denman RB; Roby WG Biochemistry; 1982 Dec; 21(25):6389-96. PubMed ID: 6129892 [TBL] [Abstract][Full Text] [Related]
16. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli. Koren R; Mildvan S Biochemistry; 1977 Jan; 16(2):241-9. PubMed ID: 189795 [TBL] [Abstract][Full Text] [Related]
17. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions. Gupta RK; Oesterling RM Biochemistry; 1976 Jun; 15(13):2881-7. PubMed ID: 7293 [TBL] [Abstract][Full Text] [Related]
18. High-affinity metal-binding site in beef heart mitochondrial F1ATPase: an EPR spectroscopy study. Zoleo A; Contessi S; Lippe G; Pinato L; Brustolon M; Brunel LC; Dabbeni-Sala F; Maniero AL Biochemistry; 2004 Oct; 43(41):13214-24. PubMed ID: 15476415 [TBL] [Abstract][Full Text] [Related]
19. Effects of manganous ion on the phosphorus-31 nuclear magnetic resonance spectrum of adenosine triphosphate bound to nitrated G-actin: proximity of divalent metal ion and nucleotide binding sites. Brauer M; Sykes BD Biochemistry; 1982 Nov; 21(23):5934-9. PubMed ID: 7150537 [TBL] [Abstract][Full Text] [Related]
20. Structures of manganese(II) complexes with ATP, ADP, and phosphocreatine in the reactive central complexes with creatine kinase: electron paramagnetic resonance studies with oxygen-17-labeled ligands. Leyh TS; Goodhart PJ; Nguyen AC; Kenyon GL; Reed GH Biochemistry; 1985 Jan; 24(2):308-16. PubMed ID: 2983754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]