These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 6090324)

  • 1. Fiber type distribution and maximal activities of enzymes involved in energy metabolism following short-term supramaximal exercise.
    Green HJ; Houston ME; Thomson JA; Fraser IG
    Int J Sports Med; 1984 Aug; 5(4):198-201. PubMed ID: 6090324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle.
    Green HJ; Fraser IG; Ranney DA
    J Neurol Sci; 1984 Sep; 65(3):323-31. PubMed ID: 6238135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal changes in the activities of glycolytic enzymes from liver and skeletal muscle of Rana perezi.
    Molina R; Mendiola P; de Costa J
    Rev Esp Fisiol; 1987 Dec; 43(4):497-502. PubMed ID: 2834804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inheritance of human skeletal muscle and anaerobic capacity adaptation to high-intensity intermittent training.
    Simoneau JA; Lortie G; Boulay MR; Marcotte M; Thibault MC; Bouchard C
    Int J Sports Med; 1986 Jun; 7(3):167-71. PubMed ID: 3733313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute responses in muscle mitochondrial and cytosolic enzyme activities during heavy intermittent exercise.
    Green HJ; Bombardier EB; Duhamel TA; Holloway GP; Tupling AR; Ouyang J
    J Appl Physiol (1985); 2008 Apr; 104(4):931-7. PubMed ID: 18202165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle.
    Parra J; Cadefau JA; Rodas G; Amigó N; Cussó R
    Acta Physiol Scand; 2000 Jun; 169(2):157-65. PubMed ID: 10848646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Onset of blood lactate accumulation and enzyme activities in m. vastus lateralis in man.
    Sjödin B; Jacobs I; Karlsson J
    Int J Sports Med; 1981 Aug; 2(3):166-70. PubMed ID: 6460707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining.
    Linossier MT; Dormois D; Perier C; Frey J; Geyssant A; Denis C
    Acta Physiol Scand; 1997 Dec; 161(4):439-45. PubMed ID: 9429650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic muscle enzyme changes after interval training.
    Roberts AD; Billeter R; Howald H
    Int J Sports Med; 1982 Feb; 3(1):18-21. PubMed ID: 7068292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early muscular and metabolic adaptations to prolonged exercise training in humans.
    Green HJ; Jones S; Ball-Burnett ME; Smith D; Livesey J; Farrance BW
    J Appl Physiol (1985); 1991 May; 70(5):2032-8. PubMed ID: 1864784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of PDH in human arm and leg muscles at rest and during intense exercise.
    Kiilerich K; Birk JB; Damsgaard R; Wojtaszewski JF; Pilegaard H
    Am J Physiol Endocrinol Metab; 2008 Jan; 294(1):E36-42. PubMed ID: 17957032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism.
    Vestergaard H
    Dan Med Bull; 1999 Feb; 46(1):13-34. PubMed ID: 10081651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise training enhances glycolytic and oxidative enzymes in canine ventricular myocardium.
    Stuewe SR; Gwirtz PA; Agarwal N; Mallet RT
    J Mol Cell Cardiol; 2000 Jun; 32(6):903-13. PubMed ID: 10888245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle enzyme activities in healthy young subjects.
    Berg A; Kim SS; Keul J
    Int J Sports Med; 1986 Aug; 7(4):236-9. PubMed ID: 3759306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of metabolic pathways in vastus lateralis of patients with chronic obstructive pulmonary disease.
    Green HJ; Bombardier E; Burnett M; Iqbal S; D'Arsigny CL; O'Donnell DE; Ouyang J; Webb KA
    Am J Physiol Regul Integr Comp Physiol; 2008 Sep; 295(3):R935-41. PubMed ID: 18635455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of ergometer-specific VO2 max and muscle enzymes to blood lactate during submaximal exercise.
    Jacobs I; Sjödin B
    Br J Sports Med; 1985 Jun; 19(2):77-80. PubMed ID: 3161575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human vastus lateralis and gastrocnemius muscles. A comparative histochemical and biochemical analysis.
    Green HJ; Daub B; Houston ME; Thomson JA; Fraser I; Ranney D
    J Neurol Sci; 1981; 52(2-3):201-10. PubMed ID: 6171618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serial effects of high-resistance and prolonged endurance training on Na+-K+ pump concentration and enzymatic activities in human vastus lateralis.
    Green H; Dahly A; Shoemaker K; Goreham C; Bombardier E; Ball-Burnett M
    Acta Physiol Scand; 1999 Feb; 165(2):177-84. PubMed ID: 10090329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic effects in human skeletal muscle fiber type distribution and enzyme activities.
    Bouchard C; Simoneau JA; Lortie G; Boulay MR; Marcotte M; Thibault MC
    Can J Physiol Pharmacol; 1986 Sep; 64(9):1245-51. PubMed ID: 2946386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of exercise on glycolytic enzymes of Zucker fatty rats.
    Hanissian SH; Tejwani GA; Mahle CD; Merola JA
    Mol Cell Biochem; 1988 Jun; 81(2):177-86. PubMed ID: 2971874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.