BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6090413)

  • 1. Futile xylitol cycle in Lactobacillus casei.
    Hausman SZ; Thompson J; London J
    J Bacteriol; 1984 Oct; 160(1):211-5. PubMed ID: 6090413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei.
    London J; Hausman S
    J Bacteriol; 1982 May; 150(2):657-61. PubMed ID: 6802797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pentitol metabolism in Lactobacillus casei.
    London J; Chace NM
    J Bacteriol; 1979 Dec; 140(3):949-54. PubMed ID: 118163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of ribitol-5-phosphate and xylitol-5-phosphate dehydrogenases from strains of Lactobacillus casei.
    Hausman SZ; London J
    J Bacteriol; 1987 Apr; 169(4):1651-5. PubMed ID: 3104310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a membrane-regulated sugar phosphate phosphohydrolase from Lactobacillus casei.
    London J; Hausman SZ; Thompson J
    J Bacteriol; 1985 Sep; 163(3):951-6. PubMed ID: 2993253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols.
    Toivari MH; Ruohonen L; Miasnikov AN; Richard P; Penttilä M
    Appl Environ Microbiol; 2007 Sep; 73(17):5471-6. PubMed ID: 17630301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes.
    Bourand A; Yebra MJ; Boël G; Mazé A; Deutscher J
    J Bacteriol; 2013 Jun; 195(11):2652-61. PubMed ID: 23564164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular xylitol-phosphate hydrolysis and efflux of xylitol in Streptococcus sobrinus.
    Trahan L; Néron S; Bareil M
    Oral Microbiol Immunol; 1991 Feb; 6(1):41-50. PubMed ID: 1658712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactobacillus casei 64H contains a phosphoenolpyruvate-dependent phosphotransferase system for uptake of galactose, as confirmed by analysis of ptsH and different gal mutants.
    Bettenbrock K; Siebers U; Ehrenreich P; Alpert CA
    J Bacteriol; 1999 Jan; 181(1):225-30. PubMed ID: 9864334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of the IIIXtl phospho-carrier protein of the phosphoenolpyruvate-dependent xylitol:phosphotransferase found in Lactobacillus casei C183.
    London J; Hausman SZ
    J Bacteriol; 1983 Nov; 156(2):611-9. PubMed ID: 6415035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains.
    Almståhl A; Lingström P; Eliasson L; Carlén A
    Clin Oral Investig; 2013 Jul; 17(6):1465-70. PubMed ID: 22956128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expulsion mechanism of xylitol 5-phosphate in Streptococcus mutans.
    Pihlanto-Leppälä A; Söderling E; Mäkinen KK
    Scand J Dent Res; 1990 Apr; 98(2):112-9. PubMed ID: 2160725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pentitol metabolism of Rhodobacter sphaeroides Si4: purification and characterization of a ribitol dehydrogenase.
    Kahle C; Schneider KH; Giffhorn F
    J Gen Microbiol; 1992 Jun; 138(6):1277-81. PubMed ID: 1527498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus plantarum: evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system.
    Chaillou S; Pouwels PH; Postma PW
    J Bacteriol; 1999 Aug; 181(16):4768-73. PubMed ID: 10438743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acquisition of ability to utilize Xylitol: disadvantages of a constitutive catabolic pathway in Escherichia coli.
    Scangos GA; Reiner AM
    J Bacteriol; 1978 May; 134(2):501-5. PubMed ID: 207668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.
    Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for presence of a xylitol phosphotransferase system in Streptococcus mutans OMZ 176.
    Assev S; Rölla G
    Acta Pathol Microbiol Immunol Scand B; 1984 Apr; 92(2):89-92. PubMed ID: 6730972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Phosphoenolpyruvate:sugar phosphotransferase systems in a strain of Lactobacillus casei subsp. casei].
    Nagasaki H; Tanaka S
    Nihon Saikingaku Zasshi; 1986 Jul; 41(4):709-16. PubMed ID: 3022022
    [No Abstract]   [Full Text] [Related]  

  • 19. Acquisitive evolution of ribitol dehydrogenase in Klebsiella pneumoniae.
    Thompson LW; Krawiec S
    J Bacteriol; 1983 May; 154(2):1027-31. PubMed ID: 6341353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Purification of Xylitol-5-Phosphate from a Cell Extract of Lactobacillus casei Cl-16.
    Trahan L; Néron S; Bareil M
    Appl Environ Microbiol; 1988 Feb; 54(2):570-3. PubMed ID: 16347566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.