BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6090413)

  • 21. Polyol metabolism by Rhizobium trifolii.
    Primrose SB; Ronson CW
    J Bacteriol; 1980 Mar; 141(3):1109-14. PubMed ID: 6767702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose transport by the phosphoenolpyruvate:mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression.
    Veyrat A; Monedero V; Pérez-Martínez G
    Microbiology (Reading); 1994 May; 140 ( Pt 5)():1141-9. PubMed ID: 8025679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acid production from Lycasin, maltitol, sorbitol and xylitol by oral streptococci and lactobacilli.
    Edwardsson S; Birkhed D; Mejàre B
    Acta Odontol Scand; 1977; 35(5):257-63. PubMed ID: 21508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Folate coenzymes of Lactobacillus casei and Streptococcus faecalis.
    Buehring KU; Tamura T; Stokstad EL
    J Biol Chem; 1974 Feb; 249(4):1081-9. PubMed ID: 4205313
    [No Abstract]   [Full Text] [Related]  

  • 25. The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response.
    Monedero V; Mazé A; Boël G; Zúñiga M; Beaufils S; Hartke A; Deutscher J
    J Mol Microbiol Biotechnol; 2007; 12(1-2):20-32. PubMed ID: 17183208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. METABOLISM OF PENTOSES AND PENTITOLS BY AEROBACTER AEROGENES. 3. PHYSICAL AND IMMUNOLOGICAL PROPERTIES OF PENITOL DEHYDROGENASES AND PENTULOKINASES.
    MORTLOCK RP; FOSSITT DD; PETERING DH; WOOD WA
    J Bacteriol; 1965 Jan; 89(1):129-35. PubMed ID: 14255652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetics of L-sorbose transport and metabolism in Lactobacillus casei.
    Yebra MJ; Veyrat A; Santos MA; Pérez-Martínez G
    J Bacteriol; 2000 Jan; 182(1):155-63. PubMed ID: 10613875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-α-1,3-N-acetylglucosamine and excretes L-fucose.
    Rodríguez-Díaz J; Rubio-del-Campo A; Yebra MJ
    Appl Environ Microbiol; 2012 Jul; 78(13):4613-9. PubMed ID: 22544237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Directed evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae.
    Doten RC; Mortlock RP
    J Bacteriol; 1984 Aug; 159(2):730-5. PubMed ID: 6378891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1204-14. PubMed ID: 6406427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PURIFICATION OF A POTASSIUM ION-ACTIVATED RNA, 5'-PHOSPHODIESTERASE FROM LACTOBACILLUS CASEI.
    KEIR HM; MATHOG RH; CARTER CE
    Biochemistry; 1964 Sep; 3():1188-93. PubMed ID: 14229658
    [No Abstract]   [Full Text] [Related]  

  • 33. Kinetic modelling of Lactobacillus casei ssp. rhamnosus growth and lactic acid production in batch cultures under various medium conditions.
    Youssef CB; Goma G; Olmos-Dichara A
    Biotechnol Lett; 2005 Nov; 27(22):1785-9. PubMed ID: 16314971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pentose synthesis in glucose-grown cells of Lactobacillus casei.
    Menezes L; Kelkar SM; Kaklij GS
    Indian J Biochem Biophys; 1990 Feb; 27(1):18-22. PubMed ID: 2111278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of medium redox potential on the folate-limited growth of Lactobacillus casei var. rhamnosus.
    Tennant GB
    J Gen Microbiol; 1976 Jan; 92(1):120-4. PubMed ID: 812947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acid production from sugars and sugar alcohols by probiotic lactobacilli and bifidobacteria in vitro.
    Haukioja A; Söderling E; Tenovuo J
    Caries Res; 2008; 42(6):449-53. PubMed ID: 18931494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth and active biomass production of Lactobacillus casei.
    Jakubowska J; Libudzisz Z; Metodiewa D
    Biotechnol Bioeng Symp; 1973; 0(4-1):143-53. PubMed ID: 4213130
    [No Abstract]   [Full Text] [Related]  

  • 38. Ribitol catabolic pathway in Klebsiella aerogenes.
    Charnetzky WT; Mortlock RP
    J Bacteriol; 1974 Jul; 119(1):162-9. PubMed ID: 4366025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes of Escherichia coli populations in continuous culture limited by pentitols.
    Sikyta B; Kyslík P
    Microbiol Sci; 1985 Jan; 2(1):25-7. PubMed ID: 3939982
    [No Abstract]   [Full Text] [Related]  

  • 40. Evaluation of pentitol metabolism in mammalian tissues provides new insight into disorders of human sugar metabolism.
    Huck JH; Roos B; Jakobs C; van der Knaap MS; Verhoeven NM
    Mol Genet Metab; 2004 Jul; 82(3):231-7. PubMed ID: 15234337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.