BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6090413)

  • 41. Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups.
    Ricciardi A; Ianniello RG; Parente E; Zotta T
    J Appl Microbiol; 2015 Sep; 119(3):776-85. PubMed ID: 26178377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The folate and thiamine transport proteins of Lactobacillus casei.
    Henderson GB; Zevely EM; Kadner RJ; Huennekens FM
    J Supramol Struct; 1977; 6(2):239-47. PubMed ID: 409888
    [No Abstract]   [Full Text] [Related]  

  • 43. Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion.
    Viana R; Monedero V; Dossonnet V; Vadeboncoeur C; Pérez-Martínez G; Deutscher J
    Mol Microbiol; 2000 May; 36(3):570-84. PubMed ID: 10844647
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ca2+-citrate uptake and metabolism in Lactobacillus casei ATCC 334.
    Mortera P; Pudlik A; Magni C; Alarcón S; Lolkema JS
    Appl Environ Microbiol; 2013 Aug; 79(15):4603-12. PubMed ID: 23709502
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth.
    Thompson J; Chassy BM
    J Bacteriol; 1982 Sep; 151(3):1454-65. PubMed ID: 6286601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic analysis and mathematical modeling of growth and lactic acid production of Lactobacillus casei var. rhamnosus in milk whey.
    Alvarez MM; Aguirre-Ezkauriatza EJ; Ramírez-Medrano A; Rodríguez-Sánchez A
    J Dairy Sci; 2010 Dec; 93(12):5552-60. PubMed ID: 21094727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Determination of folates in food products by the microbiologic method with the test organism Lactobacillus casei].
    Stepanova EN; Konovalova LV; Andreĭchuk TV
    Vopr Pitan; 1972; 31(4):84-91. PubMed ID: 4630135
    [No Abstract]   [Full Text] [Related]  

  • 48. Regulation of metabolic flux in Lactobacillus casei for lactic acid production by overexpressed ldhL gene with two-stage oxygen supply strategy.
    Ge XY; Xu Y; Chen X; Zhang LY
    J Microbiol Biotechnol; 2015 Jan; 25(1):81-8. PubMed ID: 25179900
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH.
    Overbeck TJ; Welker DL; Hughes JE; Steele JL; Broadbent JR
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802267
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrative Genomic and Proteomic Analysis of the Response of Lactobacillus casei Zhang to Glucose Restriction.
    Yu J; Hui W; Cao C; Pan L; Zhang H; Zhang W
    J Proteome Res; 2018 Mar; 17(3):1290-1299. PubMed ID: 29405720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth of Klebsiella aerogenes on xylitol: implications for bacterial enzyme evolution.
    Inderlied CB; Mortlock RP
    J Mol Evol; 1977 Apr; 9(2):181-90. PubMed ID: 864722
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular analysis of the glucose-specific phosphoenolpyruvate : sugar phosphotransferase system from Lactobacillus casei and its links with the control of sugar metabolism.
    Yebra MJ; Monedero V; Zúñiga M; Deutscher J; Pérez-Martínez G
    Microbiology (Reading); 2006 Jan; 152(Pt 1):95-104. PubMed ID: 16385119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei.
    Megee RD; Drake JF; Fredrickson AG; Tsuchiya HM
    Can J Microbiol; 1972 Nov; 18(11):1733-42. PubMed ID: 4628673
    [No Abstract]   [Full Text] [Related]  

  • 54. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS).
    Koh JH; Choi SH; Park SW; Choi NJ; Kim Y; Kim SH
    Food Microbiol; 2013 Oct; 36(1):7-13. PubMed ID: 23764214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of two-component signal transduction systems of Lactobacillus casei BL23 on tolerance to stress conditions.
    Alcántara C; Revilla-Guarinos A; Zúñiga M
    Appl Environ Microbiol; 2011 Feb; 77(4):1516-9. PubMed ID: 21183633
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lactobacillus casei as a biocatalyst for biofuel production.
    Vinay-Lara E; Wang S; Bai L; Phrommao E; Broadbent JR; Steele JL
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1205-13. PubMed ID: 27312380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of xylitol-utilizing mutants of Erwinia uredovora.
    Doten RC; Mortlock RP
    J Bacteriol; 1985 Feb; 161(2):529-33. PubMed ID: 2981816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae.
    van Zyl C; Prior BA; Kilian SG; Brandt EV
    Appl Environ Microbiol; 1993 May; 59(5):1487-94. PubMed ID: 8517743
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of temperature on L-lactic acid production and metabolite distribution of Lactobacillus casei.
    Qin H; Gong SS; Ge XY; Zhang WG
    Prep Biochem Biotechnol; 2012; 42(6):564-73. PubMed ID: 23030467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase.
    De Boeck R; Sarmiento-Rubiano LA; Nadal I; Monedero V; Pérez-Martínez G; Yebra MJ
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1915-22. PubMed ID: 19784641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.