These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6090440)

  • 1. Effect of L-alpha-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease. Reduction of the Ca2+ requirement for autolysis.
    Coolican SA; Hathaway DR
    J Biol Chem; 1984 Oct; 259(19):11627-30. PubMed ID: 6090440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of subunit autolysis in activation of smooth muscle Ca2+-dependent proteases.
    Coolican SA; Haiech J; Hathaway DR
    J Biol Chem; 1986 Mar; 261(9):4170-6. PubMed ID: 3512566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limited autolysis reduces the Ca2+ requirement of a smooth muscle Ca2+-activated protease.
    Hathaway DR; Werth DK; Haeberle JR
    J Biol Chem; 1982 Aug; 257(15):9072-7. PubMed ID: 6284756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of autolysis in activity of the Ca2+-dependent proteinases (mu-calpain and m-calpain).
    Cong J; Goll DE; Peterson AM; Kapprell HP
    J Biol Chem; 1989 Jun; 264(17):10096-103. PubMed ID: 2542320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the autolysis of m-calpain from the skeletal muscle of the amphibian Rana ridibunda.
    Sargianos N; Gaitanaki C; Beis I
    J Exp Zool; 1995 Feb; 271(2):82-94. PubMed ID: 7884390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of phosphatidylinositol and inside-out erythrocyte vesicles on autolysis of mu- and m-calpain from bovine skeletal muscle.
    Zalewska T; Thompson VF; Goll DE
    Biochim Biophys Acta; 2004 Aug; 1693(2):125-33. PubMed ID: 15313014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amino-terminal hydrophobic region of the small subunit of calcium-activated neutral protease (CANP) is essential for its activation by phosphatidylinositol.
    Imajoh S; Kawasaki H; Suzuki K
    J Biochem; 1986 Apr; 99(4):1281-4. PubMed ID: 3011770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autolysis of calcium-activated neutral protease of chicken skeletal muscle.
    Suzuki K; Tsuji S; Ishiura S; Kimura Y; Kubota S; Imahori K
    J Biochem; 1981 Dec; 90(6):1787-93. PubMed ID: 6277879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteolytic activation of calcium-activated, phospholipid-dependent protein kinase by calcium-dependent neutral protease.
    Kishimoto A; Kajikawa N; Shiota M; Nishizuka Y
    J Biol Chem; 1983 Jan; 258(2):1156-64. PubMed ID: 6296071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of factor IXa with factor VIIIa. Effects of protease domain Ca2+ binding site, proteolysis in the autolysis loop, phospholipid, and factor X.
    Mathur A; Zhong D; Sabharwal AK; Smith KJ; Bajaj SP
    J Biol Chem; 1997 Sep; 272(37):23418-26. PubMed ID: 9287357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autolysis of mu- and m-calpain from bovine skeletal muscle.
    Cottin P; Thompson VF; Sathe SK; Szpacenko A; Goll DE
    Biol Chem; 2001 May; 382(5):767-76. PubMed ID: 11517929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protease core of the muscle-specific calpain, p94, undergoes Ca2+-dependent intramolecular autolysis.
    Rey MA; Davies PL
    FEBS Lett; 2002 Dec; 532(3):401-6. PubMed ID: 12482600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a latent Ca2+/calmodulin dependent protein kinase II phosphorylation site in vascular calpain II.
    McClelland P; Adam LP; Hathaway DR
    J Biochem; 1994 Jan; 115(1):41-6. PubMed ID: 8188634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Calpain II of rabbit skeletal muscle. Regulation of enzymatic activity: influence of the presence of membrane phospholipids on enzymatic autolysis in the presence or not of substrate].
    Cottin P; Garret C; Ducastaing A
    Reprod Nutr Dev (1980); 1988; 28(3B):831-7. PubMed ID: 2847259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of an aprotinin-sensitive protease in the activation of Ca(2+)-ATPase by superoxide radical (O2-.) in microsomes of pulmonary vascular smooth muscle.
    Chakraborti T; Ghosh SK; Michael JR; Chakraborti S
    Biochem J; 1996 Aug; 317 ( Pt 3)(Pt 3):885-90. PubMed ID: 8760378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited autolysis of calcium-activated neutral protease (CANP): reduction of the Ca2+-requirement is due to the NH2-terminal processing of the large subunit.
    Imajoh S; Kawasaki H; Suzuki K
    J Biochem; 1986 Sep; 100(3):633-42. PubMed ID: 3023314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autolysis, Ca2+ requirement, and heterodimer stability in m-calpain.
    Elce JS; Hegadorn C; Arthur JS
    J Biol Chem; 1997 Apr; 272(17):11268-75. PubMed ID: 9111030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of calcium with native and decarboxylated human factor X. Effect of proteolysis in the autolysis loop on catalytic efficiency and factor Va binding.
    Sabharwal AK; Padmanabhan K; Tulinsky A; Mathur A; Gorka J; Bajaj SP
    J Biol Chem; 1997 Aug; 272(35):22037-45. PubMed ID: 9268343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of major autolytic cleavage sites in the regulatory subunit of vascular calpain II. A comparison of partial amino-terminal sequences to deduced sequence from complementary DNA.
    McCelland P; Lash JA; Hathaway DR
    J Biol Chem; 1989 Oct; 264(29):17428-31. PubMed ID: 2551902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions.
    Suzuki K; Tsuji S; Kubota S; Kimura Y; Imahori K
    J Biochem; 1981 Jul; 90(1):275-8. PubMed ID: 6270080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.