These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6090613)

  • 1. Immunocytochemical localization of the mammalian voltage-dependent sodium channel using polyclonal antibodies against the purified protein.
    Haimovich B; Bonilla E; Casadei J; Barchi R
    J Neurosci; 1984 Sep; 4(9):2259-68. PubMed ID: 6090613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoclonal antibodies against the voltage-sensitive Na+ channel from mammalian skeletal muscle.
    Casadei JM; Gordon RD; Lampson LA; Schotland DL; Barchi RL
    Proc Natl Acad Sci U S A; 1984 Oct; 81(19):6227-31. PubMed ID: 6207539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes.
    Kraner SD; Tanaka JC; Barchi RL
    J Biol Chem; 1985 May; 260(10):6341-7. PubMed ID: 2581954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunoaffinity isolation of Na+ channels from rat skeletal muscle. Analysis of subunits.
    Casadei JM; Gordon RD; Barchi RL
    J Biol Chem; 1986 Mar; 261(9):4318-23. PubMed ID: 2419342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein components of the purified sodium channel from rat skeletal muscle sarcolemma.
    Barchi RL
    J Neurochem; 1983 May; 40(5):1377-85. PubMed ID: 6300333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of sodium channel subtypes in adult rat skeletal muscle using channel-specific monoclonal antibodies.
    Haimovich B; Schotland DL; Fieles WE; Barchi RL
    J Neurosci; 1987 Sep; 7(9):2957-66. PubMed ID: 2442326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographical localization of the C-terminal region of the voltage-dependent sodium channel from Electrophorus electricus using antibodies raised against a synthetic peptide.
    Gordon RD; Fieles WE; Schotland DL; Hogue-Angeletti R; Barchi RL
    Proc Natl Acad Sci U S A; 1987 Jan; 84(1):308-12. PubMed ID: 2432607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High titer antibody to mammalian neuronal sodium channels produces sustained channel block.
    Jarnot MD; Corbett AM
    Brain Res; 1995 Mar; 674(1):159-62. PubMed ID: 7773687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of saxitoxin binding to the sodium channel of sarcolemma isolated from rat skeletal muscle.
    Barchi RL; Weigele JB
    J Physiol; 1979 Oct; 295():383-96. PubMed ID: 42783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dihydropyridine-sensitive calcium channels in cardiac and skeletal muscle membranes: studies with antibodies against the alpha subunits.
    Takahashi M; Catterall WA
    Biochemistry; 1987 Aug; 26(17):5518-26. PubMed ID: 2445374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunocytochemical visualization of the Golgi apparatus in several species, including human, and tissues with an antiserum against MG-160, a sialoglycoprotein of rat Golgi apparatus.
    Croul S; Mezitis SG; Stieber A; Chen YJ; Gonatas JO; Goud B; Gonatas NK
    J Histochem Cytochem; 1990 Jul; 38(7):957-63. PubMed ID: 2355176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of (Na+ + K+)ATPase and sodium channels in skeletal muscle and electroplax.
    Ariyasu RG; Deerinck TJ; Levinson SR; Ellisman MH
    J Neurocytol; 1987 Aug; 16(4):511-22. PubMed ID: 2445928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immuno-ultrastructural localization of sodium channels at nodes of Ranvier and perinodal astrocytes in rat optic nerve.
    Black JA; Friedman B; Waxman SG; Elmer LW; Angelides KJ
    Proc R Soc Lond B Biol Sci; 1989 Oct; 238(1290):39-51. PubMed ID: 2574468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel.
    Barchi RL; Cohen SA; Murphy LE
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1306-10. PubMed ID: 6246486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemistry of sodium channels from mammalian muscle.
    Barchi RL
    Ann N Y Acad Sci; 1986; 479():179-85. PubMed ID: 2433990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunochemical properties and cytochemical localization of the voltage-sensitive sodium channel from the electroplax of the eel (Electrophorus electricus).
    Fritz LC; Brockes JP
    J Neurosci; 1983 Nov; 3(11):2300-9. PubMed ID: 6313876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue.
    Cooper CL; Vandaele S; Barhanin J; Fosset M; Lazdunski M; Hosey MM
    J Biol Chem; 1987 Jan; 262(2):509-12. PubMed ID: 2433268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-sensitive sodium channels: an evolving molecular view.
    Barchi RL; Casadei JM; Gordon RD; Roberts RH
    Soc Gen Physiol Ser; 1987; 41():125-48. PubMed ID: 2436306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphibian ryanodine receptor isoforms are related to those of mammalian skeletal or cardiac muscle.
    Lai FA; Liu QY; Xu L; el-Hashem A; Kramarcy NR; Sealock R; Meissner G
    Am J Physiol; 1992 Aug; 263(2 Pt 1):C365-72. PubMed ID: 1325114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent activation in purified reconstituted sodium channels from rabbit T-tubular membranes.
    Furman RE; Tanaka JC; Mueller P; Barchi RL
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):488-92. PubMed ID: 2417245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.