These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 6090642)
41. A new pathway from primary afferents to the red nucleus. Padel Y; Bourbonnais D; Sybirska E Neurosci Lett; 1986 Feb; 64(1):75-80. PubMed ID: 3960391 [TBL] [Abstract][Full Text] [Related]
42. Cerebello-rubrospinal effects on hindlimb motoneurons in the monkey. Shapovalov AI; Karamjan OA; Tamarova ZA; Kurchavyi GG Brain Res; 1972 Nov; 47(1):49-59. PubMed ID: 4345034 [No Abstract] [Full Text] [Related]
43. Convergence of cortico- and rubrospinal influences on interneurones of cat cervical spinal cord. Bayev KV; Kostyuk PG Brain Res; 1973 Mar; 52():159-71. PubMed ID: 4700702 [No Abstract] [Full Text] [Related]
44. Responses of red nucleus neurons to antidromic and synaptic activation. Eccles JC; Scheid P; Táboríková H J Neurophysiol; 1975 Jul; 38(4):947-64. PubMed ID: 1159474 [TBL] [Abstract][Full Text] [Related]
45. Activity of rubrospinal neurons during locomotion and scratching in the cat. Arshavsky YI; Orlovsky GN; Perret C Behav Brain Res; 1988; 28(1-2):193-9. PubMed ID: 3382511 [TBL] [Abstract][Full Text] [Related]
46. An in vitro preparation for studying motor pattern generation in the cerebellorubrospinal circuit of the turtle. Keifer J; Houk JC Neurosci Lett; 1989 Feb; 97(1-2):123-8. PubMed ID: 2918994 [TBL] [Abstract][Full Text] [Related]
47. Relations between spinocervical and post-synaptic dorsal column neurones in the cat. Brown AG; Noble R; Riddell JS J Physiol; 1986 Dec; 381():333-49. PubMed ID: 3625537 [TBL] [Abstract][Full Text] [Related]
48. [Synaptic processes in red nucleus neurons induced in the cat by stimulation of the substantia nigra]. Sarkisian DS; Fanardzhian VV; Gorodnov VL Neirofiziologiia; 1981; 13(2):149-58. PubMed ID: 7231603 [TBL] [Abstract][Full Text] [Related]
49. Properties of the synaptic transmission of the newly formed cortico-rubral synapses after lesion of the nucleus interpositus of the cerebellum. Murakami F; Tsukahara N; Fujito Y Exp Brain Res; 1977 Nov; 30(2-3):245-58. PubMed ID: 202475 [TBL] [Abstract][Full Text] [Related]
50. The same interneurones mediate inhibition of dorsal spinocerebellar tract cells and lumbar motoneurones in the cat. Hongo T; Jankowska E; Ohno T; Sasaki S; Yamashita M; Yoshida K J Physiol; 1983 Sep; 342():161-80. PubMed ID: 6631730 [TBL] [Abstract][Full Text] [Related]
51. Physiological and anatomical characteristics of reticulospinalneurones in lamprey. Wickelgren WO J Physiol; 1977 Aug; 270(1):89-114. PubMed ID: 915826 [TBL] [Abstract][Full Text] [Related]
52. Small-caliber afferent inputs produce a heterosynaptic facilitation of the synaptic responses evoked by primary afferent A-fibers in the neonatal rat spinal cord in vitro. Thompson SW; Woolf CJ; Sivilotti LG J Neurophysiol; 1993 Jun; 69(6):2116-28. PubMed ID: 8350135 [TBL] [Abstract][Full Text] [Related]
53. [Distribution and characteristics of the axonal collaterals of the rubrospinal neurons at the brain stem level]. Sarkisian DS; Fanardzhian VV; Kazarian NK Fiziol Zh SSSR Im I M Sechenova; 1982 Jul; 68(7):904-13. PubMed ID: 7117615 [TBL] [Abstract][Full Text] [Related]
54. Effects of NH4+ on reflexes in cat spinal cord. Raabe W J Neurophysiol; 1990 Aug; 64(2):565-74. PubMed ID: 2213133 [TBL] [Abstract][Full Text] [Related]
55. Rubrospinal tract of the cat: superposition of antidromic responses and changes in axonal excitability following orthodromic activity. Canedo A; Lamas JA Brain Res; 1989 Nov; 502(1):28-38. PubMed ID: 2819457 [TBL] [Abstract][Full Text] [Related]
56. [Effectivess of synaptic influences of the ascending tracts of different spinal cord funiculi on reticulospinal neurons in cats]. Pavlacek Iu; Piliavskiĭ AI; Shtraus P; Duda P Neirofiziologiia; 1979; 11(3):254-63. PubMed ID: 223075 [TBL] [Abstract][Full Text] [Related]
57. Spinal evoked responses in the cat. A comparison of different recording techniques with regard to neuromonitoring. Krause R; Schramm J Neurochirurgia (Stuttg); 1987 Jan; 30(1):1-4. PubMed ID: 3031522 [TBL] [Abstract][Full Text] [Related]
58. Organization of synaptic transmission in the mammalian solitary complex, studied in vitro. Champagnat J; Denavit-Saubié M; Grant K; Shen KF J Physiol; 1986 Dec; 381():551-73. PubMed ID: 3040963 [TBL] [Abstract][Full Text] [Related]
59. Functional properties of the cerebellorubral synapses in the cat. Gorodnov VL; Fanardjian VV Brain Res; 1987 May; 410(2):340-2. PubMed ID: 3036310 [TBL] [Abstract][Full Text] [Related]
60. Synaptic plasticity of the interpositorubral pathway functionally related to forelimb flexion movements. Pananceau M; Rispal-Padel L; Meftah EM J Neurophysiol; 1996 Jun; 75(6):2542-61. PubMed ID: 8793763 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]