These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6090815)

  • 1. A coulombic hypothesis of mitochondrial oxidative phosphorylation.
    Malpress FH
    J Theor Biol; 1984 Aug; 109(4):501-21. PubMed ID: 6090815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria.
    Rottenberg H; Robertson DE; Rubin E
    Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5.
    de Jonge PC; Westerhoff HV
    Biochem J; 1982 May; 204(2):515-23. PubMed ID: 6288021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local energized proton hypotheses of mitochondrial oxidative phosphorylation.
    Malpress FH
    J Theor Biol; 1984 Aug; 109(4):523-32. PubMed ID: 6090816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the chemiosmotic hypothesis and the nature of the mitochondrial protonmotive force.
    Malpress FH
    J Theor Biol; 1981 Oct; 92(3):255-65. PubMed ID: 6276619
    [No Abstract]   [Full Text] [Related]  

  • 7. Characterisation of membrane vesicles from Paracoccus denitrificans and measurements of the effect of partial uncoupling on their thermodynamics of oxidative phosphorylation.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):417-24. PubMed ID: 6301833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of transmembrane hydroxide transport into the chemiosmotic theory.
    de Grey AD
    Bioelectrochem Bioenerg; 1999 Oct; 49(1):43-50. PubMed ID: 10619447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction.
    Wainio WW
    Int Rev Cytol; 1985; 96():29-50. PubMed ID: 2867062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unequal charge separation by different coupling spans of the mitochondrial electron transport chain.
    Brand MD; Harper WG; Nicholls DG; Ingledew WJ
    FEBS Lett; 1978 Nov; 95(1):125-9. PubMed ID: 720593
    [No Abstract]   [Full Text] [Related]  

  • 11. The protonmotive force as an intermediate in electron transport-linked phosphorylation: problems and prospects.
    Kell DB
    Curr Top Cell Regul; 1992; 33():279-89. PubMed ID: 1323445
    [No Abstract]   [Full Text] [Related]  

  • 12. Oxidative phosphorylation and mitochondrial physiology: a critical review of chemiosmotic theory, and reinterpretation by the association-induction hypothesis.
    Ling GN
    Physiol Chem Phys; 1981; 13(1):29-96. PubMed ID: 7022492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the relationship between rate of ATP synthesis and H+ electrochemical gradient in rat-liver mitochondria.
    Zoratti M; Pietrobon D; Azzone GF
    Eur J Biochem; 1982 Sep; 126(3):443-51. PubMed ID: 6291930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electromagnetic coupling hypothesis to explain the proton translocation mechanism in mitochondria, bacteria and chloroplasts.
    Menèndez RG
    Med Hypotheses; 1996 Sep; 47(3):179-82. PubMed ID: 8898316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane electricity as a convertible energy currency for the cell.
    Skulachev VP
    Can J Biochem; 1980 Mar; 58(3):161-75. PubMed ID: 6245772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The present state of the chemiosmotic coupling theory.
    Westerhoff HV; Helgerson SL; Theg SM; van Kooten O; Wikström M; Skulachev VP; Dancsházy Z
    Acta Biochim Biophys Acad Sci Hung; 1983; 18(3-4):129-49. PubMed ID: 6234744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain.
    Murphy MP; Brand MD
    Eur J Biochem; 1988 May; 173(3):637-44. PubMed ID: 2836195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of oxidative phosphorylation that accommodates the chemical intermediate, chemiosmotic, localized proton and conformational hypotheses.
    Ji S
    J Theor Biol; 1976 Jul; 59(2):319-30. PubMed ID: 134179
    [No Abstract]   [Full Text] [Related]  

  • 19. [Effect of Ca ions on the transmembrane electric potential, synthesis and hydrolysis of ATP in brain mitochondria].
    Karadzhov IuS; Kudzina LIu; Zinchenko VP
    Biofizika; 1988; 33(1):77-82. PubMed ID: 3370241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Current topics on oxidative phosphorylation (author's transl)].
    Ozawa T
    Tanpakushitsu Kakusan Koso; 1977 Apr; 22(4):249-59. PubMed ID: 323925
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.