These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria. Rottenberg H; Robertson DE; Rubin E Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912 [TBL] [Abstract][Full Text] [Related]
3. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria. Woelders H; van der Velden T; van Dam K Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288 [TBL] [Abstract][Full Text] [Related]
4. THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5. de Jonge PC; Westerhoff HV Biochem J; 1982 May; 204(2):515-23. PubMed ID: 6288021 [TBL] [Abstract][Full Text] [Related]
6. On the chemiosmotic hypothesis and the nature of the mitochondrial protonmotive force. Malpress FH J Theor Biol; 1981 Oct; 92(3):255-65. PubMed ID: 6276619 [No Abstract] [Full Text] [Related]
7. Characterisation of membrane vesicles from Paracoccus denitrificans and measurements of the effect of partial uncoupling on their thermodynamics of oxidative phosphorylation. McCarthy JE; Ferguson SJ Eur J Biochem; 1983 May; 132(2):417-24. PubMed ID: 6301833 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of transmembrane hydroxide transport into the chemiosmotic theory. de Grey AD Bioelectrochem Bioenerg; 1999 Oct; 49(1):43-50. PubMed ID: 10619447 [TBL] [Abstract][Full Text] [Related]
9. An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction. Wainio WW Int Rev Cytol; 1985; 96():29-50. PubMed ID: 2867062 [TBL] [Abstract][Full Text] [Related]
10. Unequal charge separation by different coupling spans of the mitochondrial electron transport chain. Brand MD; Harper WG; Nicholls DG; Ingledew WJ FEBS Lett; 1978 Nov; 95(1):125-9. PubMed ID: 720593 [No Abstract] [Full Text] [Related]
11. The protonmotive force as an intermediate in electron transport-linked phosphorylation: problems and prospects. Kell DB Curr Top Cell Regul; 1992; 33():279-89. PubMed ID: 1323445 [No Abstract] [Full Text] [Related]
12. Oxidative phosphorylation and mitochondrial physiology: a critical review of chemiosmotic theory, and reinterpretation by the association-induction hypothesis. Ling GN Physiol Chem Phys; 1981; 13(1):29-96. PubMed ID: 7022492 [TBL] [Abstract][Full Text] [Related]
13. On the relationship between rate of ATP synthesis and H+ electrochemical gradient in rat-liver mitochondria. Zoratti M; Pietrobon D; Azzone GF Eur J Biochem; 1982 Sep; 126(3):443-51. PubMed ID: 6291930 [TBL] [Abstract][Full Text] [Related]
14. An electromagnetic coupling hypothesis to explain the proton translocation mechanism in mitochondria, bacteria and chloroplasts. Menèndez RG Med Hypotheses; 1996 Sep; 47(3):179-82. PubMed ID: 8898316 [TBL] [Abstract][Full Text] [Related]
15. Membrane electricity as a convertible energy currency for the cell. Skulachev VP Can J Biochem; 1980 Mar; 58(3):161-75. PubMed ID: 6245772 [TBL] [Abstract][Full Text] [Related]
16. The present state of the chemiosmotic coupling theory. Westerhoff HV; Helgerson SL; Theg SM; van Kooten O; Wikström M; Skulachev VP; Dancsházy Z Acta Biochim Biophys Acad Sci Hung; 1983; 18(3-4):129-49. PubMed ID: 6234744 [TBL] [Abstract][Full Text] [Related]
17. Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. Murphy MP; Brand MD Eur J Biochem; 1988 May; 173(3):637-44. PubMed ID: 2836195 [TBL] [Abstract][Full Text] [Related]
18. A model of oxidative phosphorylation that accommodates the chemical intermediate, chemiosmotic, localized proton and conformational hypotheses. Ji S J Theor Biol; 1976 Jul; 59(2):319-30. PubMed ID: 134179 [No Abstract] [Full Text] [Related]
19. [Effect of Ca ions on the transmembrane electric potential, synthesis and hydrolysis of ATP in brain mitochondria]. Karadzhov IuS; Kudzina LIu; Zinchenko VP Biofizika; 1988; 33(1):77-82. PubMed ID: 3370241 [TBL] [Abstract][Full Text] [Related]