These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6091032)

  • 1. Sequence-specific DNA damage induced by reduced mitomycin C and 7-N-(p-hydroxyphenyl)mitomycin C.
    Ueda K; Komano T
    Nucleic Acids Res; 1984 Sep; 12(17):6673-83. PubMed ID: 6091032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence specificity of heat-labile sites in DNA induced by mitomycin C.
    Ueda K; Morita J; Komano T
    Biochemistry; 1984 Apr; 23(8):1634-40. PubMed ID: 6232949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of bacteriophage phi X174 by mitomycin C in the presence of sodium hydrosulfite and cupric ions.
    Ueda K; Morita J; Yamashita K; Komano T
    Chem Biol Interact; 1980 Feb; 29(2):145-58. PubMed ID: 6444372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phage inactivation and DNA strand scission activities of 7-N-(p-hydroxyphenyl)mitomycin C.
    Ueda K; Morita J; Komano T
    J Antibiot (Tokyo); 1982 Oct; 35(10):1380-6. PubMed ID: 6217180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of single strand scission in bacteriophage phi X174 replicative form I DNA by mitomycin C.
    Ueda K; Morita J; Komano T
    J Antibiot (Tokyo); 1981 Mar; 34(3):317-22. PubMed ID: 6456248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced mitomycin C induces heat-labile sites in DNA at specific sequences.
    Ueda K; Morita J; Komano T
    Nucleic Acids Symp Ser; 1983; (12):99-102. PubMed ID: 6664882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA strand scission by enzymatically reduced mitomycin C: evidence for participation of the hydroxyl radical in the DNA damage.
    Hamana K; Kawada K; Sugioka K; Nakano M; Tero-Kubota S; Ikegami Y
    Biochem Int; 1985 Feb; 10(2):301-9. PubMed ID: 2986638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in the inhibition of restriction enzyme cleavage of lambda phage DNA produced by two covalent binding antitumor agents: anthramycin and mitomycin C.
    Kaplan DJ
    Biochem Biophys Res Commun; 1982 Dec; 109(3):639-48. PubMed ID: 6297483
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies related to antitumor antibiotics. Part V. Reactions of mitomycin C with DNA examined by ethidium fluorescence assay.
    Lown JW; Begleiter A; Johnson D; Morgan AR
    Can J Biochem; 1976 Feb; 54(2):110-9. PubMed ID: 4201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the superoxide dismutase inhibitor, diethyldithiocarbamate, on the cytotoxicity of mitomycin antibiotics.
    Pritsos CA; Keyes SR; Sartorelli AC
    Cancer Biochem Biophys; 1989 Oct; 10(4):289-98. PubMed ID: 2559790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H2O2 generation during the redox cycle of mitomycin C and dna-bound mitomycin C.
    Tomasz M
    Chem Biol Interact; 1976 Apr; 13(1):89-97. PubMed ID: 770011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive activation of mitomycin C.
    Hoey BM; Butler J; Swallow AJ
    Biochemistry; 1988 Apr; 27(7):2608-14. PubMed ID: 3132971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxicity and DNA lesions produced by mitomycin C and porfiromycin in hypoxic and aerobic EMT6 and Chinese hamster ovary cells.
    Fracasso PM; Sartorelli AC
    Cancer Res; 1986 Aug; 46(8):3939-44. PubMed ID: 3089583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA sequence-specific adducts of adriamycin and mitomycin C.
    Phillips DR; White RJ; Cullinane C
    FEBS Lett; 1989 Mar; 246(1-2):233-40. PubMed ID: 2495987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free radical formation by antitumor quinones.
    Powis G
    Free Radic Biol Med; 1989; 6(1):63-101. PubMed ID: 2492250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitomycin-induced chromatid breaks in HeLa cells: a consequence of incomplete DNA replication.
    Sognier MA; Hittelman WN
    Cancer Res; 1986 Aug; 46(8):4032-40. PubMed ID: 3089585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism.
    Li Y; Trush MA
    Cancer Res; 1994 Apr; 54(7 Suppl):1895s-1898s. PubMed ID: 8137307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of mitomycin C with mammalian DNA detected by alkaline elution.
    Dorr RT; Bowden GT; Alberts DS; Liddil JD
    Cancer Res; 1985 Aug; 45(8):3510-6. PubMed ID: 3926301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkylation of DNA by C-10 of 2,7-diaminomitosene.
    Iyengar BS; Dorr RT; Shipp NG; Remers WA
    J Med Chem; 1990 Jan; 33(1):253-7. PubMed ID: 2296022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of 8-hydroxyguanine in DNA during mitomycin C activation.
    Maccubbin AE; Ersing N; Budzinski EE; Box HC; Gurtoo HL
    Cancer Biochem Biophys; 1994 Oct; 14(3):183-91. PubMed ID: 7728739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.