These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 6091123)

  • 41. A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription.
    Bram RJ; Lue NF; Kornberg RD
    EMBO J; 1986 Mar; 5(3):603-8. PubMed ID: 3011415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deletion analysis of GAL4 defines two transcriptional activating segments.
    Ma J; Ptashne M
    Cell; 1987 Mar; 48(5):847-53. PubMed ID: 3028647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NIP1, a gene required for nuclear transport in yeast.
    Gu Z; Moerschell RP; Sherman F; Goldfarb DS
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10355-9. PubMed ID: 1332047
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of a yeast three-hybrid system to clone bridging proteins.
    Zhang J
    Methods Enzymol; 2000; 328():103-10. PubMed ID: 11075341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Degradation of a nuclear-localized protein in mammalian COS cells, using Escherichia coli beta-galactosidase as a model protein.
    Tsuneoka M; Mekada E
    J Biol Chem; 1992 May; 267(13):9107-11. PubMed ID: 1577746
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation of product-specific antisera by gene fusion: antibodies specific for the product of the yeast cell-division-cycle gene CDC28.
    Reed SI
    Gene; 1982 Dec; 20(2):255-65. PubMed ID: 6299892
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thymidylate synthase is localized to the nuclear periphery in the yeast Saccharomyces cerevisiae.
    Poon PP; Storms RK
    J Biol Chem; 1994 Mar; 269(11):8341-7. PubMed ID: 8132557
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of nuclear localizing sequences derived from yeast ribosomal protein L29.
    Underwood MR; Fried HM
    EMBO J; 1990 Jan; 9(1):91-9. PubMed ID: 2104804
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae.
    Post-Beittenmiller MA; Hamilton RW; Hopper JE
    Mol Cell Biol; 1984 Jul; 4(7):1238-45. PubMed ID: 6209559
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Separate information required for nuclear and subnuclear localization: additional complexity in localizing an enzyme shared by mitochondria and nuclei.
    Rose AM; Joyce PB; Hopper AK; Martin NC
    Mol Cell Biol; 1992 Dec; 12(12):5652-8. PubMed ID: 1448094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcription factor clusters enable target search but do not contribute to target gene activation.
    Meeussen JVW; Pomp W; Brouwer I; de Jonge WJ; Patel HP; Lenstra TL
    Nucleic Acids Res; 2023 Jun; 51(11):5449-5468. PubMed ID: 36987884
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Decoupling transcription factor expression and activity enables dimmer switch gene regulation.
    Ricci-Tam C; Ben-Zion I; Wang J; Palme J; Li A; Savir Y; Springer M
    Science; 2021 Apr; 372(6539):292-295. PubMed ID: 33859035
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein-Functionalized DNA Nanostructures as Tools to Control Transcription in Zebrafish Embryos.
    Angelin A; Kassel O; Rastegar S; Strähle U; Niemeyer CM
    ChemistryOpen; 2017 Feb; 6(1):33-39. PubMed ID: 28168148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Building Spatial Synthetic Biology with Compartments, Scaffolds, and Communities.
    Polka JK; Hays SG; Silver PA
    Cold Spring Harb Perspect Biol; 2016 Aug; 8(8):. PubMed ID: 27270297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1.
    Born N; Thiesen HJ; Lorenz P
    PLoS One; 2014; 9(2):e87609. PubMed ID: 24498343
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inefficient expression of the DNA-binding domain of GAL4 in transgenic plants.
    Reichel C; Feltkamp D; Walden R; Steinbiß HH; Schell J; Rosahl S
    Plant Cell Rep; 1995 Oct; 14(12):773-6. PubMed ID: 24186710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation and functional characterization of the anti-transferrin receptor single-chain antibody-GAL4 (TfRscFv-GAL4) fusion protein.
    Ye Q; Hu H; Wang Z; Lu T; Hu Z; Zeng X; Zhang S; Liu J; Lei P; Wang CY; Ye Z; Shen G
    BMC Biotechnol; 2012 Nov; 12():91. PubMed ID: 23192001
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analyzing phosphorylation-dependent regulation of subcellular localization and transcriptional activity of transcriptional coactivator NT-PGC-1α.
    Chang JS; Gettys TW
    Methods Mol Biol; 2013; 952():163-73. PubMed ID: 23100231
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RAI1 transcription factor activity is impaired in mutants associated with Smith-Magenis Syndrome.
    Carmona-Mora P; Canales CP; Cao L; Perez IC; Srivastava AK; Young JI; Walz K
    PLoS One; 2012; 7(9):e45155. PubMed ID: 23028815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pamela Silver: synthesizing a new biology. Interview by Caitlin Sedwick.
    Silver P
    J Cell Biol; 2012 Feb; 196(3):302-3. PubMed ID: 22312001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.