These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 6091134)

  • 1. Genetic recombination can generate altered restriction specificity.
    Fuller-Pace FV; Bullas LR; Delius H; Murray NE
    Proc Natl Acad Sci U S A; 1984 Oct; 81(19):6095-9. PubMed ID: 6091134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two DNA recognition domains of the specificity polypeptides of a family of type I restriction enzymes.
    Fuller-Pace FV; Murray NE
    Proc Natl Acad Sci U S A; 1986 Dec; 83(24):9368-72. PubMed ID: 3025838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid recognition sequence in a recombinant restriction enzyme and the evolution of DNA sequence specificity.
    Nagaraja V; Shepherd JC; Bickle TA
    Nature; 1985 Jul 25-31; 316(6026):371-2. PubMed ID: 2991768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA restriction and modification systems in Salmonella. SQ, a new system derived by recombination between the SB system of Salmonella typhimurium and the SP system of Salmonella potsdam.
    Bullas LR; Colson C; Van Pel A
    J Gen Microbiol; 1976 Jul; 95(1):166-72. PubMed ID: 784901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reassortment of DNA recognition domains and the evolution of new specificities.
    Gann AA; Campbell AJ; Collins JF; Coulson AF; Murray NE
    Mol Microbiol; 1987 Jul; 1(1):13-22. PubMed ID: 2838725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence diversity among related genes for recognition of specific targets in DNA molecules.
    Gough JA; Murray NE
    J Mol Biol; 1983 May; 166(1):1-19. PubMed ID: 6304321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular organization of sbcC, a gene that affects genetic recombination and the viability of DNA palindromes in Escherichia coli K-12.
    Naom IS; Morton SJ; Leach DR; Lloyd RG
    Nucleic Acids Res; 1989 Oct; 17(20):8033-45. PubMed ID: 2530497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Escherichia coli dnaC gene product. I. Overlapping of the dnaC proteins of Escherichia coli and Salmonella typhimurium by cloning into a high copy number plasmid.
    Kobori JA; Kornberg A
    J Biol Chem; 1982 Nov; 257(22):13757-62. PubMed ID: 6292203
    [No Abstract]   [Full Text] [Related]  

  • 9. Two-step cloning and expression in Escherichia coli of the DNA restriction-modification system StyLTI of Salmonella typhimurium.
    De Backer O; Colson C
    J Bacteriol; 1991 Feb; 173(3):1321-7. PubMed ID: 1846861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two type I restriction enzymes from Salmonella species. Purification and DNA recognition sequences.
    Nagaraja V; Shepherd JC; Pripfl T; Bickle TA
    J Mol Biol; 1985 Apr; 182(4):579-87. PubMed ID: 2989535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide sequence of the Salmonella typhimurium origin of DNA replication.
    Zyskind JW; Smith DW
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2460-4. PubMed ID: 6248850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extension of bacteriophage lambda host range: selection, cloning, and characterization of a constitutive lambda receptor gene.
    de Vries GE; Raymond CK; Ludwig RA
    Proc Natl Acad Sci U S A; 1984 Oct; 81(19):6080-4. PubMed ID: 6091132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chi-stimulated patches are heteroduplex, with recombinant information on the phage lambda r chain.
    Rosenberg SM
    Cell; 1987 Mar; 48(5):855-65. PubMed ID: 2949853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of lambda vehicles to isolate ompC-lacZ gene fusions in Salmonella typhimurium LT2.
    Harkki A; Karkku H; Palva ET
    Mol Gen Genet; 1987 Oct; 209(3):607-11. PubMed ID: 2828886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deoxyribonucleic acid restriction and modification systems in Salmonella: chromosomally located systems of different serotypes.
    Bullas LR; Colson C; Neufeld B
    J Bacteriol; 1980 Jan; 141(1):275-92. PubMed ID: 6243623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EcoA and EcoE: alternatives to the EcoK family of type I restriction and modification systems of Escherichia coli.
    Fuller-Pace FV; Cowan GM; Murray NE
    J Mol Biol; 1985 Nov; 186(1):65-75. PubMed ID: 3001317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural homologies among type I restriction-modification systems.
    Murray NE; Gough JA; Suri B; Bickle TA
    EMBO J; 1982; 1(5):535-9. PubMed ID: 6329689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA restriction and modification systems in Salmonella. III. SP, a Salmonella potsdam system allelic to the SB system in Salmonella typhimurium.
    Bullas LR; Colson C
    Mol Gen Genet; 1975 Aug; 139(3):177-88. PubMed ID: 1102934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Specificity of Tn9 insertion into the genome of bacteriophage lambda att80 depending on its preceding location].
    Zakharenko VI; Shatalin KIu; Smirnov GB
    Genetika; 1982; 18(8):1221-30. PubMed ID: 6290312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of homology in site-specific recombination of bacteriophage lambda: evidence against joining of cohesive ends.
    Nash HA; Bauer CE; Gardner JF
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4049-53. PubMed ID: 2954163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.