BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 6091667)

  • 1. Streptonigrin-induced deoxyribose degradation: inhibition by superoxide dismutase, hydroxyl radical scavengers and iron chelators.
    Gutteridge JM
    Biochem Pharmacol; 1984 Oct; 33(19):3059-62. PubMed ID: 6091667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitomycin C-induced deoxyribose degradation inhibited by superoxide dismutase. A reaction involving iron, hydroxyl and semiquinone radicals.
    Gutteridge JM; Quinlan GJ; Wilkins S
    FEBS Lett; 1984 Feb; 167(1):37-41. PubMed ID: 6321237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radical damage to deoxyribose by anthracycline, aureolic acid and aminoquinone antitumour antibiotics. An essential requirement for iron, semiquinones and hydrogen peroxide.
    Gutteridge JM; Quinlan GJ
    Biochem Pharmacol; 1985 Dec; 34(23):4099-103. PubMed ID: 2998399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the superoxide and hydroxyl radicals in the degradation of DNA and deoxyribose induced by a copper-phenanthroline complex.
    Gutteridge JM; Halliwell B
    Biochem Pharmacol; 1982 Sep; 31(17):2801-5. PubMed ID: 6291545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deoxyribose breakdown by the adriamycin semiquinone and H2O2: evidence for hydroxyl radical participation.
    Bates DA; Winterbourn CC
    FEBS Lett; 1982 Aug; 145(1):137-42. PubMed ID: 6897044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanadyl causes hydroxyl radical mediated degradation of deoxyribose.
    Liochev S; Ivancheva E
    Free Radic Res Commun; 1991; 14(5-6):335-42. PubMed ID: 1663905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide radical initiates the autoxidation of dihydroxyacetone.
    Mashino T; Fridovich I
    Arch Biochem Biophys; 1987 May; 254(2):547-51. PubMed ID: 3034165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of hydroxyl radical scavengers on platelet function.
    Violi F; Ghiselli A; Iuliano L; Alessandri C; Cordova C; Balsano F
    Haemostasis; 1988; 18(2):91-8. PubMed ID: 2842241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.
    Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM
    Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions.
    Gee P; Davison AJ
    Free Radic Biol Med; 1989; 6(3):271-84. PubMed ID: 2545550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts.
    Gutteridge JM
    FEBS Lett; 1982 Dec; 150(2):454-8. PubMed ID: 6297981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of superoxide dismutase, catalase, chelating agents, and free radical scavengers on the toxicity of alloxan to isolated pancreatic islets in vitro.
    Jörns A; Tiedge M; Lenzen S; Munday R
    Free Radic Biol Med; 1999 May; 26(9-10):1300-4. PubMed ID: 10381203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of DNA strand breakage and base oxidation by nitroxyl anion through hydroxyl radical production.
    Ohshima H; Gilibert I; Bianchini F
    Free Radic Biol Med; 1999 May; 26(9-10):1305-13. PubMed ID: 10381204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of free radicals and tumors in the kidneys of Wistar rats by ferric ethylenediamine-N,N'-diacetate.
    Liu M; Okada S
    Carcinogenesis; 1994 Dec; 15(12):2817-21. PubMed ID: 8001240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of metal chelators and antiinflammatory drugs on the degradation of hyaluronic acid.
    Betts WH; Cleland LG
    Arthritis Rheum; 1982 Dec; 25(12):1469-76. PubMed ID: 6816249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the iron-catalysed formation of hydroxyl radicals by nitrosouracil derivatives: protection of mitochondrial membranes against lipid peroxidation.
    Rabion A; Verlhac JB; Fraisse L; Roche B; Seris JL
    Free Radic Res Commun; 1993; 19(6):409-23. PubMed ID: 8168730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of lysozyme inactivation and degradation by iron.
    Sellak H; Franzini E; Hakim J; Pasquier C
    Arch Biochem Biophys; 1992 Nov; 299(1):172-8. PubMed ID: 1332614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide-mediated release of iron from ferritin by some flavoenzymes.
    Bando Y; Aki K
    Biochem Biophys Res Commun; 1990 Apr; 168(2):389-95. PubMed ID: 2159290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.