These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 6091830)

  • 1. Some characteristics of the long-latency component of the evoked muscle response induced by administration of catechol to the anaesthetized rat: a neurophysiological and neuropharmacological investigation.
    Dewhurst DG
    Br J Pharmacol; 1984 Sep; 83(1):83-8. PubMed ID: 6091830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensorimotor cortical representation in the rat and the role of the cortex in the production of sensory myoclonic jerks.
    Angel A; Lemon RN
    J Physiol; 1975 Jun; 248(2):465-88. PubMed ID: 1151793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pharmacological investigation of the electrically evoked convulsive activity induced by administration of catechol in the anaesthetized rat.
    Angel A; Dewhurst DG
    Br J Pharmacol; 1978 Dec; 64(4):539-44. PubMed ID: 728682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinematic and electromyographic study of cutaneous reflexes evoked from the forelimb of unrestrained walking cats.
    Drew T; Rossignol S
    J Neurophysiol; 1987 Apr; 57(4):1160-84. PubMed ID: 3585458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of ipsi- and contralateral reflex responses in unrestrained walking cats.
    Duysens J; Loeb GE
    J Neurophysiol; 1980 Nov; 44(5):1024-37. PubMed ID: 7441320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromyographic response to displacement of different forelimb joints in the squirrel monkey.
    Lenz FA; Tatton WG; Tasker RR
    J Neurosci; 1983 Apr; 3(4):783-94. PubMed ID: 6834105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non involvement of gamma-aminobutyric acid in catechol-induced seizures.
    Dewhurst DG
    Br J Pharmacol; 1986 Jan; 87(1):167-73. PubMed ID: 3006851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential synaptic effects on physiological flexor hindlimb motoneurons from cutaneous nerve inputs in spinal cat.
    Leahy JC; Durkovic RG
    J Neurophysiol; 1991 Aug; 66(2):460-72. PubMed ID: 1774582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional organization within the medullary reticular formation of the intact unanesthetized cat. III. Microstimulation during locomotion.
    Drew T
    J Neurophysiol; 1991 Sep; 66(3):919-38. PubMed ID: 1753295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of positive force feedback among hindlimb extensors in the intact standing cat.
    Pratt CA
    J Neurophysiol; 1995 Jun; 73(6):2578-83. PubMed ID: 7666164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the long-latency reflex responses of the human flexor digitorum profundus.
    Matthews PB; Miles TS
    J Physiol; 1988 Oct; 404():515-34. PubMed ID: 3253440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cortical lesions on the electromyographic response to joint displacement in the squirrel monkey forelimb.
    Lenz FA; Tatton WG; Tasker RR
    J Neurosci; 1983 Apr; 3(4):795-805. PubMed ID: 6834106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-latency spinal reflex in man after flexor reflex afferent stimulation.
    Roby-Brami A; Bussel B
    Brain; 1987 Jun; 110 ( Pt 3)():707-25. PubMed ID: 3107749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-latency crossed inhibitory responses in extensor muscles during locomotion in the cat.
    Frigon A; Rossignol S
    J Neurophysiol; 2008 Feb; 99(2):989-98. PubMed ID: 18094100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that low-threshold muscle afferents evoke long-latency stretch reflexes in human hand muscles.
    Noth J; Schwarz M; Podoll K; Motamedi F
    J Neurophysiol; 1991 May; 65(5):1089-97. PubMed ID: 1831227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of experimental muscle pain on short and long-latency components of stretch-reflex in the elbow muscles of the unanaesthetized cat].
    Lyzun DV; Tal'nov AM; Dovhalets' HV; Kostiukov OI
    Fiziol Zh (1994); 2007; 53(1):41-7. PubMed ID: 17500201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of afferent volleys from the limbs on the discharge patterns of interpositus neurones in cats anaesthetized with alpha-chloralose.
    Armstrong DM; Cogdell B; Harvey R
    J Physiol; 1975 Jun; 248(2):489-517. PubMed ID: 1151794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical actions of heterogenic reflexes among ankle stabilizers and their interactions with plantarflexors of the cat hindlimb.
    Bonasera SJ; Nichols TR
    J Neurophysiol; 1996 May; 75(5):2050-70. PubMed ID: 8734603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular analysis of reflex pathways underlying the stumbling corrective reaction during fictive locomotion in the cat.
    Quevedo J; Stecina K; McCrea DA
    J Neurophysiol; 2005 Sep; 94(3):2053-62. PubMed ID: 15917324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural mechanisms underlying the clasp-knife reflex in the cat. I. Characteristics of the reflex.
    Cleland CL; Rymer WZ
    J Neurophysiol; 1990 Oct; 64(4):1303-18. PubMed ID: 2258748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.