These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6091886)

  • 1. Activation of beta-adrenergic receptors stimulates taurine release from glial cells.
    Shain WG; Martin DL
    Cell Mol Neurobiol; 1984 Jun; 4(2):191-6. PubMed ID: 6091886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of beta-adrenergic receptors stimulates release of an inhibitory transmitter from astrocytes.
    Shain W; Madelian V; Martin DL; Kimelberg HK; Perrone M; Lepore R
    J Neurochem; 1986 Apr; 46(4):1298-303. PubMed ID: 3005511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-receptor-stimulated and cyclic adenosine 3',5'-monophosphate-mediated taurine release from LRM55 glial cells.
    Madelian V; Martin DL; Lepore R; Perrone M; Shain W
    J Neurosci; 1985 Dec; 5(12):3154-60. PubMed ID: 3001238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine stimulates cAMP-mediated taurine release from LRM55 glial cells.
    Madelian V; Silliman S; Shain W
    J Neurosci Res; 1988; 20(2):176-81. PubMed ID: 2459404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor regulation of the glutamate, GABA and taurine high-affinity uptake into astrocytes in primary culture.
    Hansson E; Rönnbäck L
    Brain Res; 1991 May; 548(1-2):215-21. PubMed ID: 1678295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taurine release from the pineal-gland is stimulated via a beta-adrenergic mechanism.
    Wheler GH; Klein DC
    Brain Res; 1980 Apr; 187(1):155-64. PubMed ID: 6244066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous and beta-adrenergic receptor-mediated taurine release from astroglial cells do not require extracellular calcium.
    Martin DL; Madelian V; Shain W
    J Neurosci Res; 1989 Jun; 23(2):191-7. PubMed ID: 2547083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous and beta-adrenergic receptor-mediated taurine release from astroglial cells are independent of manipulations of intracellular calcium.
    Shain W; Connor JA; Madelian V; Martin DL
    J Neurosci; 1989 Jul; 9(7):2306-12. PubMed ID: 2545835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of osmotic pressure and membrane potential in K(+)-stimulated taurine release from cultured astrocytes and LRM55 cells.
    Martin DL; Madelian V; Seligmann B; Shain W
    J Neurosci; 1990 Feb; 10(2):571-7. PubMed ID: 2303860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple adrenergic receptor subtypes controlling cyclic AMP formation: comparison of brain slices and primary neuronal and glial cultures.
    Atkinson BN; Minneman KP
    J Neurochem; 1991 Feb; 56(2):587-95. PubMed ID: 1671087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of beta-adrenergic receptor binding sites.
    Mukherjee C; Caron MG; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 1975 May; 72(5):1945-9. PubMed ID: 1057183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptors for beta-adrenergic agonists in cultured chick ventricular cells. Relationship between agonist binding and physiologic effect.
    Marsh JD; Smith TW
    Mol Pharmacol; 1985 Jan; 27(1):10-8. PubMed ID: 2981398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-adrenergic-agonist stimulated taurine release from astroglial cells is modulated by extracellular [K+] and osmolarity.
    Martin DL; Shain W
    Neurochem Res; 1993 Apr; 18(4):437-44. PubMed ID: 8097293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct and synergistic interactions of 3,5,3'-triiodothyronine and the adrenergic system in stimulating sugar transport by rat thymocytes.
    Segal J; Ingbar SH
    J Clin Invest; 1980 May; 65(5):958-66. PubMed ID: 7364946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catecholamines stimulate steroid secretion of dispersed fowl adrenocortical cells, acting through the beta-receptor subtype.
    Mazzocchi G; Gottardo G; Nussdorfer GG
    Horm Metab Res; 1997 Apr; 29(4):190-2. PubMed ID: 9178030
    [No Abstract]   [Full Text] [Related]  

  • 16. Human immunodeficiency virus coat protein gp120 inhibits the beta-adrenergic regulation of astroglial and microglial functions.
    Levi G; Patrizio M; Bernardo A; Petrucci TC; Agresti C
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1541-5. PubMed ID: 8381971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of adenylate cyclase-coupled beta adrenergic receptor binding sites by beta adrenergic catecholamines in vitro.
    Mickey JV; Tate R; Mullikin D; Lefkowitz RJ
    Mol Pharmacol; 1976 May; 12(3):409-19. PubMed ID: 934056
    [No Abstract]   [Full Text] [Related]  

  • 18. Regulation of adenylate cyclase coupled beta-adrenergic receptors by beta-adrenergic catecholamines.
    Mukherjee C; Caron MG; Lefkowitz RJ
    Endocrinology; 1976 Aug; 99(2):347-57. PubMed ID: 954636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexistence of beta 1-, beta 2-, and beta 3-adrenoceptors in dog fat cells and their differential activation by catecholamines.
    Galitzky J; Reverte M; Portillo M; Carpéné C; Lafontan M; Berlan M
    Am J Physiol; 1993 Mar; 264(3 Pt 1):E403-12. PubMed ID: 8096365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha and beta adrenergic receptor involvement in catecholamine-induced growth of gram-negative bacteria.
    Lyte M; Ernst S
    Biochem Biophys Res Commun; 1993 Jan; 190(2):447-52. PubMed ID: 8381276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.