These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6091941)

  • 1. Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds.
    Fink KL; Gross RW
    Circ Res; 1984 Nov; 55(5):585-94. PubMed ID: 6091941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysophosphatidylcholine and sodium-calcium exchange in cardiac sarcolemma: comparison with ischemia.
    Bersohn MM; Philipson KD; Weiss RS
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C433-8. PubMed ID: 2003570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of long-chain acyl carnitine on membrane fluidity of human erythrocytes.
    Watanabe H; Kobayashi A; Hayashi H; Yamazaki N
    Biochim Biophys Acta; 1989 Apr; 980(3):315-8. PubMed ID: 2540838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipids of myocardial membranes: susceptibility of a fraction enriched in sarcolemma to hydrolysis by an exogenous mammalian phospholipase A2.
    Owens K; Pang DC; Franson RC; Weglicki WB
    Lipids; 1980 Jul; 15(7):534-8. PubMed ID: 7412509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential molecular dynamics and transmembrane fluidity gradients in canine myocardial sarcolemma and sarcoplasmic reticulum.
    Pak JH; Han X; Gross RW
    Chem Phys Lipids; 1992 Apr; 61(2):111-9. PubMed ID: 1324803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of L-carnitine and palmitoylcarnitine on membrane fluidity of human erythrocytes.
    Kobayashi A; Watanabe H; Fujisawa S; Yamamoto T; Yamazaki N
    Biochim Biophys Acta; 1989 Nov; 986(1):83-8. PubMed ID: 2554984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selected metabolic alterations in the ischemic heart and their contributions to arrhythmogenesis.
    Corr PB; Yamada KA
    Herz; 1995 Jun; 20(3):156-68. PubMed ID: 7543431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fatty acid intermediates on Na+-K+-ATPase activity of cardiac sarcolemma.
    Owens K; Kennett FF; Weglicki WB
    Am J Physiol; 1982 Mar; 242(3):H456-61. PubMed ID: 6278956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association of lysophosphatidylcholine with isolated cardiac myocytes.
    Man RY; Kinnaird AA; Bihler I; Choy PC
    Lipids; 1990 Aug; 25(8):450-4. PubMed ID: 2215087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Structural state of the cardiomyocyte sarcolemma in animals of different ages].
    Miliutin AA; Bulanova KIa; Kiriliuk AP; Kol'tover VK
    Biofizika; 1987; 32(3):438-42. PubMed ID: 3040128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological effects of acetyl glyceryl ether phosphorylcholine on cardiac tissues: comparison with lysophosphatidylcholine and long chain acyl carnitine.
    Nakaya H; Tohse N
    Br J Pharmacol; 1986 Dec; 89(4):749-57. PubMed ID: 3814909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Membranotropic effect of phosphocreatine and its structural analogs].
    Konorev EA; Medvedeva NV; Dzhaliashvili IV; Stepanov VA; Saks VA
    Biokhimiia; 1991 Sep; 56(9):1701-9. PubMed ID: 1660733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron Spin Resonance Evaluation of Buccal Membrane Fluidity Alterations by Sodium Caprylate and L-Menthol.
    Chede LS; Wagner BA; Buettner GR; Donovan MD
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of L-carnitine and its acetate and propionate esters on the molecular dynamics of human erythrocyte membrane.
    Arduini A; Gorbunov N; Arrigoni-Martelli E; Dottori S; Molajoni F; Russo F; Federici G
    Biochim Biophys Acta; 1993 Mar; 1146(2):229-35. PubMed ID: 8383998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of myocardial rotenone-insensitive NADH cytochrome c reductase by amphiphilic compounds.
    Kennett FF; Knauer TE; Owens K; Weglicki WB
    Am J Physiol; 1984 Dec; 247(6 Pt 2):H889-94. PubMed ID: 6507637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of ischaemia, lysophosphatidylcholine and palmitoylcarnitine on rat heart phospholipase A2 activity.
    Bentham JM; Higgins AJ; Woodward B
    Basic Res Cardiol; 1987; 82 Suppl 1():127-35. PubMed ID: 3663003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiation of free radical-induced lipid peroxidative injury to sarcolemmal membranes by lipid amphiphiles.
    Mak IT; Kramer JH; Weglicki WB
    J Biol Chem; 1986 Jan; 261(3):1153-7. PubMed ID: 3003057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysophosphatidylcholine inhibits cardiolipin biosynthesis in H9c2 cardiac myoblast cells.
    Xu FY; Taylor WA; Hatch GM
    Arch Biochem Biophys; 1998 Jan; 349(2):341-8. PubMed ID: 9448723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of phospholipase activities in chromaffin granule ghosts isolated from the bovine adrenal medulla.
    Husebye ES; Flatmark T
    Biochim Biophys Acta; 1987 Jul; 920(2):120-30. PubMed ID: 3607074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pHe, [Ca2+]e, and cell death during metabolic inhibition: role of phospholipase A2 and sarcolemmal phospholipids.
    Post JA; Wang SY; Langer GA
    Am J Physiol; 1998 Jan; 274(1):H18-26. PubMed ID: 9458847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.