BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 6091941)

  • 1. Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds.
    Fink KL; Gross RW
    Circ Res; 1984 Nov; 55(5):585-94. PubMed ID: 6091941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysophosphatidylcholine and sodium-calcium exchange in cardiac sarcolemma: comparison with ischemia.
    Bersohn MM; Philipson KD; Weiss RS
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C433-8. PubMed ID: 2003570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of long-chain acyl carnitine on membrane fluidity of human erythrocytes.
    Watanabe H; Kobayashi A; Hayashi H; Yamazaki N
    Biochim Biophys Acta; 1989 Apr; 980(3):315-8. PubMed ID: 2540838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipids of myocardial membranes: susceptibility of a fraction enriched in sarcolemma to hydrolysis by an exogenous mammalian phospholipase A2.
    Owens K; Pang DC; Franson RC; Weglicki WB
    Lipids; 1980 Jul; 15(7):534-8. PubMed ID: 7412509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential molecular dynamics and transmembrane fluidity gradients in canine myocardial sarcolemma and sarcoplasmic reticulum.
    Pak JH; Han X; Gross RW
    Chem Phys Lipids; 1992 Apr; 61(2):111-9. PubMed ID: 1324803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of L-carnitine and palmitoylcarnitine on membrane fluidity of human erythrocytes.
    Kobayashi A; Watanabe H; Fujisawa S; Yamamoto T; Yamazaki N
    Biochim Biophys Acta; 1989 Nov; 986(1):83-8. PubMed ID: 2554984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selected metabolic alterations in the ischemic heart and their contributions to arrhythmogenesis.
    Corr PB; Yamada KA
    Herz; 1995 Jun; 20(3):156-68. PubMed ID: 7543431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fatty acid intermediates on Na+-K+-ATPase activity of cardiac sarcolemma.
    Owens K; Kennett FF; Weglicki WB
    Am J Physiol; 1982 Mar; 242(3):H456-61. PubMed ID: 6278956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association of lysophosphatidylcholine with isolated cardiac myocytes.
    Man RY; Kinnaird AA; Bihler I; Choy PC
    Lipids; 1990 Aug; 25(8):450-4. PubMed ID: 2215087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Structural state of the cardiomyocyte sarcolemma in animals of different ages].
    Miliutin AA; Bulanova KIa; Kiriliuk AP; Kol'tover VK
    Biofizika; 1987; 32(3):438-42. PubMed ID: 3040128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological effects of acetyl glyceryl ether phosphorylcholine on cardiac tissues: comparison with lysophosphatidylcholine and long chain acyl carnitine.
    Nakaya H; Tohse N
    Br J Pharmacol; 1986 Dec; 89(4):749-57. PubMed ID: 3814909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Membranotropic effect of phosphocreatine and its structural analogs].
    Konorev EA; Medvedeva NV; Dzhaliashvili IV; Stepanov VA; Saks VA
    Biokhimiia; 1991 Sep; 56(9):1701-9. PubMed ID: 1660733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron Spin Resonance Evaluation of Buccal Membrane Fluidity Alterations by Sodium Caprylate and L-Menthol.
    Chede LS; Wagner BA; Buettner GR; Donovan MD
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of L-carnitine and its acetate and propionate esters on the molecular dynamics of human erythrocyte membrane.
    Arduini A; Gorbunov N; Arrigoni-Martelli E; Dottori S; Molajoni F; Russo F; Federici G
    Biochim Biophys Acta; 1993 Mar; 1146(2):229-35. PubMed ID: 8383998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of myocardial rotenone-insensitive NADH cytochrome c reductase by amphiphilic compounds.
    Kennett FF; Knauer TE; Owens K; Weglicki WB
    Am J Physiol; 1984 Dec; 247(6 Pt 2):H889-94. PubMed ID: 6507637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of ischaemia, lysophosphatidylcholine and palmitoylcarnitine on rat heart phospholipase A2 activity.
    Bentham JM; Higgins AJ; Woodward B
    Basic Res Cardiol; 1987; 82 Suppl 1():127-35. PubMed ID: 3663003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiation of free radical-induced lipid peroxidative injury to sarcolemmal membranes by lipid amphiphiles.
    Mak IT; Kramer JH; Weglicki WB
    J Biol Chem; 1986 Jan; 261(3):1153-7. PubMed ID: 3003057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysophosphatidylcholine inhibits cardiolipin biosynthesis in H9c2 cardiac myoblast cells.
    Xu FY; Taylor WA; Hatch GM
    Arch Biochem Biophys; 1998 Jan; 349(2):341-8. PubMed ID: 9448723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of phospholipase activities in chromaffin granule ghosts isolated from the bovine adrenal medulla.
    Husebye ES; Flatmark T
    Biochim Biophys Acta; 1987 Jul; 920(2):120-30. PubMed ID: 3607074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pHe, [Ca2+]e, and cell death during metabolic inhibition: role of phospholipase A2 and sarcolemmal phospholipids.
    Post JA; Wang SY; Langer GA
    Am J Physiol; 1998 Jan; 274(1):H18-26. PubMed ID: 9458847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.