BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 6092327)

  • 1. Haptenic activity of galactosyl ceramide and its topographical distribution on liposomal membranes. Effects of temperature and phospholipid composition.
    Utsumi H; Suzuki T; Inoue K; Nojima S
    J Biochem; 1984 Jul; 96(1):97-105. PubMed ID: 6092327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptenic activity of galactosyl ceramide and its topographical distribution on liposomal membranes. I. Effect of cholesterol incorporation.
    Suzuki T; Utsumi H; Inoue K; Nojima S
    Biochim Biophys Acta; 1981 Jun; 644(2):183-91. PubMed ID: 6266467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic properties of the haptenic site of lipid haptens in phosphatidylcholine membranes. Their relation to the phase transition of the host lattice.
    Takeshita K; Utsumi H; Hamada A
    Biophys J; 1987 Aug; 52(2):187-97. PubMed ID: 2822160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunogenicity of liposomal model membranes sensitized with spin-labeled haptens and topographical distribution of haptens on the membranes.
    Hashimoto K; Inoue K; Nojima S; Tadakuma T; Yasuda T
    J Biochem; 1982 Dec; 92(6):1813-21. PubMed ID: 6761338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune reactions of liposomes containing cardiolipin and their relation to membrane fluidity.
    Takashi T; Inoue K; Nojima S
    J Biochem; 1980 Mar; 87(3):679-85. PubMed ID: 7190143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosphingolipid fatty acid arrangement in phospholipid bilayers: cholesterol effects.
    Morrow MR; Singh D; Lu D; Grant CW
    Biophys J; 1995 Jan; 68(1):179-86. PubMed ID: 7711240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acyl chain length effects related to glycosphingolipid crypticity in phospholipid membranes: probed by 2H-NMR.
    Hamilton KS; Briere K; Jarrell HC; Grant CW
    Biochim Biophys Acta; 1994 Mar; 1190(2):367-75. PubMed ID: 8142438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosphingolipid headgroup orientation in fluid phospholipid/cholesterol membranes: similarity for a range of glycolipid fatty acids.
    Morrow MR; Singh DM; Grant CW
    Biophys J; 1995 Sep; 69(3):955-64. PubMed ID: 8519995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of galactosylceramide to galactose oxidase in liposomes: dependence on lipid environment and ceramide composition.
    Stewart RJ; Boggs JM
    Biochemistry; 1993 Jun; 32(21):5605-14. PubMed ID: 8504080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular interaction between glycolipids and glycophorin on liposomal membranes.
    Endo T; Nojima S; Inoue K
    J Biochem; 1982 Dec; 92(6):1883-90. PubMed ID: 7161262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential scanning calorimetry and 31P NMR studies on sonicated and unsonicated phosphatidylcholine liposomes.
    de Kruijff B; Cullis PR; Radda GK
    Biochim Biophys Acta; 1975 Sep; 406(1):6-20. PubMed ID: 1242108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and dynamical aspects of membrane immunochemistry using model membranes.
    Brûlet P; McConnell HM
    Biochemistry; 1977 Mar; 16(6):1209-17. PubMed ID: 191064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative fluorescence polarization study of cis-parinaroyl-phosphatidylcholine and diphenylhexatriene in membranes containing different amounts of cholesterol.
    Christiansson A; Kuypers FA; Roelofsen B; Wirtz KW; Op den Kamp JA
    Chem Phys Lipids; 1984 Aug; 35(3):247-58. PubMed ID: 6548417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of temperature on complement-dependent immune damage to liposomes.
    Alving CR; Urban KA; Richards RL
    Biochim Biophys Acta; 1980 Jul; 600(1):117-25. PubMed ID: 6156699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity of human C-reactive protein with positively charged liposomes.
    Tsujimoto M; Inoue K; Nojima S
    J Biochem; 1981 Nov; 90(5):1507-14. PubMed ID: 7338519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of anti-cerebroside sulfate antisera using a theoretical model to analyse liposome immune lysis data.
    Crook SJ; Stewart R; Boggs JM; Vistnes AI; Zalc B
    Mol Immunol; 1987 Nov; 24(11):1135-43. PubMed ID: 3696165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of immunogenic properties of haptenated liposomal model membranes in mice. V. Effect of membrane composition on humoral and cellular immunogenicity.
    van Houte AJ; Snippe H; Schmitz MG; Willers JM
    Immunology; 1981 Nov; 44(3):561-8. PubMed ID: 7033115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting surface expression of glycolipids: influence of lipid environment and ceramide composition on antibody recognition of cerebroside sulfate in liposomes.
    Crook SJ; Boggs JM; Vistnes AI; Koshy KM
    Biochemistry; 1986 Nov; 25(23):7488-94. PubMed ID: 3801428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The incorporation of cholesterol into inner mitochondrial membranes and its effect on lipid phase transition.
    Madden TD; Vigo C; Bruckdorfer KR; Chapman D
    Biochim Biophys Acta; 1980 Jul; 599(2):528-37. PubMed ID: 7407107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer of cholesterol between liposomal membranes.
    Nakagawa Y; Inoue K; Nojima S
    Biochim Biophys Acta; 1979 May; 553(2):307-19. PubMed ID: 444520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.