BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6092329)

  • 1. Alpha- and beta-adrenergic stimulation of parenchymal cell Ca2+ influx. Influence of extracellular pH.
    Blackmore PF; Waynick LE; Blackman GE; Graham CW; Sherry RS
    J Biol Chem; 1984 Oct; 259(20):12322-5. PubMed ID: 6092329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course of alpha1-adrenergic and vasopressin actions on phosphorylase activation, calcium efflux, pyridine nucleotide reduction, and respiration in hepatocytes.
    Blackmore PF; Hughes BP; Charest R; Shuman EA; Exton JH
    J Biol Chem; 1983 Sep; 258(17):10488-94. PubMed ID: 6309807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the alpha-adrenergic activation of hepatic glucose output. I. Studies on the alpha-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells.
    Hutson NJ; Brumley FT; Assimacopoulos FD; Harper SC; Exton JH
    J Biol Chem; 1976 Sep; 251(17):5200-8. PubMed ID: 8456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The action of alpha-adrenergic agonists on plasma-membrane calcium fluxes in perfused rat liver.
    Reinhart PH; Taylor WM; Bygrave FL
    Biochem J; 1984 May; 220(1):43-50. PubMed ID: 6743272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predominance of beta-adrenergic over alpha-adrenergic receptor functions involved in phosphorylase activation in liver cells of cholestatic rats.
    Okajima F; Ui M
    Arch Biochem Biophys; 1984 May; 230(2):640-51. PubMed ID: 6324691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on alpha-adrenergic activation of hepatic glucose output. Relationship between alpha-adrenergic stimulation of calcium efflux and activation of phosphorylase in isolated rat liver parenchymal cells.
    Blackmore PF; Brumley FT; Marks JL; Exton JH
    J Biol Chem; 1978 Jul; 253(14):4851-8. PubMed ID: 27509
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies of the interaction between glucagon and alpha-adrenergic agonists in the control of hepatic glucose output.
    Assimacopoulos-Jeannet FD; Blackmore PF; Exton JH
    J Biol Chem; 1982 Apr; 257(7):3759-65. PubMed ID: 6120943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of hepatic glycogenolysis by alpha 1- and beta 2-adrenergic agonists. Evidence against short term agonist-induced desensitization of the responses.
    Morgan NG; Shuman EA; Exton JH; Blackmore PF
    J Biol Chem; 1982 Dec; 257(23):13907-10. PubMed ID: 7142184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The release of intracellular Ca2+ in lacrimal acinar cells by alpha-, beta-adrenergic and muscarinic cholinergic stimulation: the roles of inositol triphosphate and cyclic ADP-ribose.
    Gromada J; Jørgensen TD; Dissing S
    Pflugers Arch; 1995 Apr; 429(6):751-61. PubMed ID: 7603829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of the alpha 1-adrenergic control of hepatocyte calcium redistribution by increases in cyclic AMP.
    Morgan NG; Blackmore PF; Exton JH
    J Biol Chem; 1983 Apr; 258(8):5110-6. PubMed ID: 6300115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways of alpha 1-adrenergic action: comparison with V1-vasopressin and A1-angiotensin.
    Garcia-Sáinz JA
    Circ Res; 1987 Nov; 61(5 Pt 2):II1-5. PubMed ID: 2822282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on alpha-adrenergic activation of hepatic glucose output. Studies on role of calcium in alpha-adrenergic activation of phosphorylase.
    Assimacopoulos-Jeannet FD; Blackmore PF; Exton JH
    J Biol Chem; 1977 Apr; 252(8):2662-9. PubMed ID: 323250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of hormonal regulation of liver metabolism.
    Exton JH; Blackmore PF; El-Refai MF; Dehaye JP; Strickland WG; Cherrington AD; Chan TM; Assimacopoulos-Jeannet FD; Chrisman TD
    Adv Cyclic Nucleotide Res; 1981; 14():491-505. PubMed ID: 6116389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in free cytosolic Ca2+ in hepatocytes following alpha 1-adrenergic stimulation. Studies on Quin-2-loaded hepatocytes.
    Charest R; Blackmore PF; Berthon B; Exton JH
    J Biol Chem; 1983 Jul; 258(14):8769-73. PubMed ID: 6134732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Ca2+ and protein kinase C in the receptor-mediated activation of Na+/H+ exchange in isolated liver cells.
    Martín-Requero A; Daza FJ; Hermida OG; Butta N; Parrilla R
    Biochem J; 1997 Aug; 325 ( Pt 3)(Pt 3):631-6. PubMed ID: 9271082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adrenergic regulation of glucose metabolism in rat heart. A calcium-dependent mechanism mediated by both alpha- and beta-adrenergic receptors.
    Clark MG; Patten GS
    J Biol Chem; 1984 Dec; 259(24):15204-11. PubMed ID: 6096362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of adrenalectomy on the alpha-adrenergic regulation of cytosolic free calcium in hepatocytes.
    Freudenrich CC; Borle AB
    J Biol Chem; 1988 Jun; 263(18):8604-10. PubMed ID: 2837459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Ca2+-dependent actions of the alpha-adrenergic agonist phenylephrine on hepatic glycogenolysis differ from those of vasopressin and angiotensin.
    Kleineke J; Söling HD
    Eur J Biochem; 1987 Jan; 162(1):143-50. PubMed ID: 3816777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sexual dimorphism in adrenergic regulation of hepatic glycogenolysis.
    Studer RK
    Am J Physiol; 1987 Apr; 252(4 Pt 1):E467-76. PubMed ID: 3031990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasopressin-, angiotensin II-, and alpha 1-adrenergic-induced inhibition of Ca2+ transport by rat liver plasma membrane vesicles.
    Prpić V; Green KC; Blackmore PF; Exton JH
    J Biol Chem; 1984 Feb; 259(3):1382-5. PubMed ID: 6693408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.