BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 6092375)

  • 1. The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide.
    Baldwin DA; Jenny ER; Aisen P
    J Biol Chem; 1984 Nov; 259(21):13391-4. PubMed ID: 6092375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation.
    Britigan BE; Edeker BL
    J Clin Invest; 1991 Oct; 88(4):1092-102. PubMed ID: 1655825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl radical formation and iron-binding proteins. Stimulation by the purple acid phosphatases.
    Sibille JC; Doi K; Aisen P
    J Biol Chem; 1987 Jan; 262(1):59-62. PubMed ID: 3025217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide-dependent formation of hydroxyl radical catalyzed by transferrin.
    Motohashi N; Mori I
    FEBS Lett; 1983 Jun; 157(1):197-9. PubMed ID: 6305716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin.
    Bannister JV; Bannister WH; Hill HA; Thornalley PJ
    Biochim Biophys Acta; 1982 Mar; 715(1):116-20. PubMed ID: 6280774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase.
    Lloyd RV; Mason RP
    J Biol Chem; 1990 Oct; 265(28):16733-6. PubMed ID: 2170352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.
    Ambruso DR; Johnston RB
    J Clin Invest; 1981 Feb; 67(2):352-60. PubMed ID: 6780607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactoferrin-catalysed hydroxyl radical production. Additional requirement for a chelating agent.
    Winterbourn CC
    Biochem J; 1983 Jan; 210(1):15-9. PubMed ID: 6303309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The superoxide-dependent transfer of iron from ferritin to transferrin and lactoferrin.
    Monteiro HP; Winterbourn CC
    Biochem J; 1988 Dec; 256(3):923-8. PubMed ID: 2852009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Are lactoferrin and transferrin promoters of hydroxyl-radical generation?
    Aruoma OI; Halliwell B
    Biochem J; 1987 Jan; 241(1):273-8. PubMed ID: 3032157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate.
    Egan TJ; Barthakur SR; Aisen P
    J Inorg Biochem; 1992 Dec; 48(4):241-9. PubMed ID: 1336036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts.
    Halliwell B; Gutteridge JM
    Arch Biochem Biophys; 1986 May; 246(2):501-14. PubMed ID: 3010861
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetic studies on spin trapping of superoxide and hydroxyl radicals generated in NADPH-cytochrome P-450 reductase-paraquat systems. Effect of iron chelates.
    Yamazaki I; Piette LH; Grover TA
    J Biol Chem; 1990 Jan; 265(2):652-9. PubMed ID: 2153108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical is not a product of the reaction of xanthine oxidase and xanthine. The confounding problem of adventitious iron bound to xanthine oxidase.
    Britigan BE; Pou S; Rosen GM; Lilleg DM; Buettner GR
    J Biol Chem; 1990 Oct; 265(29):17533-8. PubMed ID: 2170383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative oxidations of tyrosines and methionines in transferrins: human serum transferrin, human lactotransferrin, and chicken ovotransferrin.
    Penner MH; Yamasaki RB; Osuga DT; Babin DR; Meares CF; Feeney RE
    Arch Biochem Biophys; 1983 Sep; 225(2):740-7. PubMed ID: 6312890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The production of oxygen-centered radicals by bacillus-Calmette-Guerin-activated macrophages. An electron paramagnetic resonance study of the response to phorbol myristate acetate.
    Hume DA; Gordon S; Thornalley PJ; Bannister JV
    Biochim Biophys Acta; 1983 Oct; 763(3):245-50. PubMed ID: 6313069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibilities of lactoferrin and transferrin to myeloperoxidase-dependent loss of iron-binding capacity.
    Winterbourn CC; Molloy AL
    Biochem J; 1988 Mar; 250(2):613-6. PubMed ID: 2833250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phagocytes, O2 reduction, and hydroxyl radical.
    Cohen MS; Britigan BE; Hassett DJ; Rosen GM
    Rev Infect Dis; 1988; 10(6):1088-96. PubMed ID: 2849797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of porphyrins on iron-catalysed generation of hydroxyl radicals.
    Van Steveninck J; Boegheim JP; Dubbelman TM; Van der Zee J
    Biochem J; 1988 Feb; 250(1):197-201. PubMed ID: 2833235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.