BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 6092480)

  • 41. Reaction of human skin chymotrypsin-like proteinase chymase with plasma proteinase inhibitors.
    Schechter NM; Sprows JL; Schoenberger OL; Lazarus GS; Cooperman BS; Rubin H
    J Biol Chem; 1989 Dec; 264(35):21308-15. PubMed ID: 2592376
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The chymase-angiotensin system in humans: biochemistry, molecular biology and potential role in cardiovascular diseases.
    Liao Y; Husain A
    Can J Cardiol; 1995 Aug; 11 Suppl F():13F-19F. PubMed ID: 7664213
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tissue factor pathway inhibitor is highly susceptible to chymase-mediated proteolysis.
    Hamuro T; Kido H; Asada Y; Hatakeyama K; Okumura Y; Kunori Y; Kamimura T; Iwanaga S; Kamei S
    FEBS J; 2007 Jun; 274(12):3065-77. PubMed ID: 17509077
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Pathophysiological roles of human chymase].
    Nakayama S; Urata H; Arakawa K
    Nihon Rinsho; 1997 Aug; 55(8):1903-8. PubMed ID: 9284400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radioligand binding reveals chymase as the predominant enzyme for mediating tissue conversion of angiotensin I in the normal human heart.
    Katugampola SD; Davenport AP
    Clin Sci (Lond); 2002 Jan; 102(1):15-21. PubMed ID: 11749656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibitors of chymase as mast cell-stabilizing agents: contribution of chymase in the activation of human mast cells.
    He S; Gaça MD; McEuen AR; Walls AF
    J Pharmacol Exp Ther; 1999 Nov; 291(2):517-23. PubMed ID: 10525066
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative study of kallikrein-like serine proteinases from rat submandibular glands.
    Bedi GS
    Prep Biochem Biotechnol; 1996 May; 26(2):85-104. PubMed ID: 8784920
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cooperation between mast cell carboxypeptidase A and the chymase mouse mast cell protease 4 in the formation and degradation of angiotensin II.
    Lundequist A; Tchougounova E; Abrink M; Pejler G
    J Biol Chem; 2004 Jul; 279(31):32339-44. PubMed ID: 15173164
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conversion of angiotensin-1 to angiotensin-2 by a latent endothelial cell peptidyl dipeptidase that is not angiotensin-converting enzyme.
    Lanzillo JJ; Dasarathy Y; Stevens J; Fanburg BL
    Biochem Biophys Res Commun; 1986 Jan; 134(2):770-6. PubMed ID: 3511910
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of chymase-dependent angiotensin II formation in regulating blood pressure in spontaneously hypertensive rats.
    Kirimura K; Takai S; Jin D; Muramatsu M; Kishi K; Yoshikawa K; Nakabayashi M; Mino Y; Miyazaki M
    Hypertens Res; 2005 May; 28(5):457-64. PubMed ID: 16156510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein products of the rat kallikrein gene family. Substrate specificities of kallikrein rK2 (tonin) and kallikrein rK9.
    Moreau T; Brillard-Bourdet M; Bouhnik J; Gauthier F
    J Biol Chem; 1992 May; 267(14):10045-51. PubMed ID: 1315752
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple determinants for the high substrate specificity of an angiotensin II-forming chymase from the human heart.
    Kinoshita A; Urata H; Bumpus FM; Husain A
    J Biol Chem; 1991 Oct; 266(29):19192-7. PubMed ID: 1918036
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Angiotensin II-producing enzyme III from acidified serum of nephrectomized dogs.
    Haas E; Lewis L; Koshy TJ; Varde AU; Renerts L; Bagai RC
    Am J Hypertens; 1989 Sep; 2(9):696-707. PubMed ID: 2572242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human chymase.
    Schechter NM
    Monogr Allergy; 1990; 27():114-31. PubMed ID: 2084534
    [No Abstract]   [Full Text] [Related]  

  • 55. Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations.
    Balcells E; Meng QC; Johnson WH; Oparil S; Dell'Italia LJ
    Am J Physiol; 1997 Oct; 273(4):H1769-74. PubMed ID: 9362242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple pathways of angiotensin I conversion and their functional role in the canine penile corpus cavernosum.
    Iwamoto Y; Song K; Takai S; Yamada M; Jin D; Sakaguchi M; Ueda H; Katsuoka Y; Miyazaki M
    J Pharmacol Exp Ther; 2001 Jul; 298(1):43-8. PubMed ID: 11408523
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tryptase and chymase: comparison of extraction and release in two dog mastocytoma lines.
    Caughey GH; Lazarus SC; Viro NF; Gold WM; Nadel JA
    Immunology; 1988 Feb; 63(2):339-44. PubMed ID: 3127330
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme.
    Ahmad S; Varagic J; VonCannon JL; Groban L; Collawn JF; Dell'Italia LJ; Ferrario CM
    Biochem Biophys Res Commun; 2016 Sep; 478(2):559-64. PubMed ID: 27465904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Serine proteinases are regionally segregated within mast cell granules.
    Whitaker-Menezes D; Schechter NM; Murphy GF
    Lab Invest; 1995 Jan; 72(1):34-41. PubMed ID: 7837788
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism.
    Rice GI; Thomas DA; Grant PJ; Turner AJ; Hooper NM
    Biochem J; 2004 Oct; 383(Pt 1):45-51. PubMed ID: 15283675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.