These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 6092566)

  • 1. Recovery of the ipsilateral oculotectal projection following nerve crush in the frog: evidence that retinal afferents make synapses at abnormal tectal locations.
    Adamson J; Burke J; Grobstein P
    J Neurosci; 1984 Oct; 4(10):2635-49. PubMed ID: 6092566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats.
    Berman N; Cynader M
    J Physiol; 1972 Jul; 224(2):363-89. PubMed ID: 5071401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of visual experience in the formation of binocular projections in frogs.
    Udin SB
    Cell Mol Neurobiol; 1985 Jun; 5(1-2):85-102. PubMed ID: 3896495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity.
    Finlay BL; Wilson KG; Schneider GE
    J Comp Neurol; 1979 Feb; 183(4):721-40. PubMed ID: 762269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity sharpens the map during the regeneration of the retinotectal projection in goldfish.
    Schmidt JT; Edwards DL
    Brain Res; 1983 Jun; 269(1):29-39. PubMed ID: 6307483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal organization underlying visually elicited prey orienting in the frog--III. Evidence for the existence of an uncrossed descending tectofugal pathway.
    Kostyk SK; Grobstein P
    Neuroscience; 1987 Apr; 21(1):83-96. PubMed ID: 3496554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superimposed maps of the monocular visual fields in the caudolateral optic tectum in the frog, Rana pipiens.
    Winkowski DE; Gruberg ER
    Vis Neurosci; 2005; 22(1):101-9. PubMed ID: 15842745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. I. Normal maturational changes in response to changing binocular geometry.
    Grant S; Keating MJ
    Exp Brain Res; 1989; 75(1):99-116. PubMed ID: 2707359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of neonatal enucleation on receptive-field properties of visual neurons in superior colliculus of the golden hamster.
    Rhoades RW; Chalupa LM
    J Neurophysiol; 1980 Mar; 43(3):595-611. PubMed ID: 7373351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect, across-the-midline retinotectal projections and representation of ipsilateral visual field in superior colliculus of the cat.
    Antonini A; Berlucchi G; Sprague JM
    J Neurophysiol; 1978 Mar; 41(2):285-304. PubMed ID: 650268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of prenatal and neonatal monocular enucleation on visual topography in the uncrossed retinal pathway to the rat superior colliculus.
    Jeffery G; Thompson ID
    Exp Brain Res; 1986; 63(2):351-63. PubMed ID: 3758252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role for cell adhesion and glycosyl (HNK-1 and oligomannoside) recognition in the sharpening of the regenerating retinotectal projection in goldfish.
    Schmidt JT; Schachner M
    J Neurobiol; 1998 Dec; 37(4):659-71. PubMed ID: 9858266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative electrophysiological studies of regenerating visuotopic maps in goldfish--I. Early recovery of dimming sensitivity in tectum and torus longitudinalis.
    Northmore DP
    Neuroscience; 1989; 32(3):739-47. PubMed ID: 2601842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal projections throughout optic nerve regeneration in the ornate dragon lizard, Ctenophorus ornatus.
    Dunlop SA; Tran N; Tee LB; Papadimitriou J; Beazley LD
    J Comp Neurol; 2000 Jan; 416(2):188-200. PubMed ID: 10581465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant visual projections in the Siamese cat.
    Hubel DH; Wiesel TN
    J Physiol; 1971 Oct; 218(1):33-62. PubMed ID: 5130620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological evidence for transient topographic organization of retinotectal projections during optic nerve regeneration in the lizard, Ctenophorus ornatus.
    Stirling RV; Dunlop SA; Beazley LD
    Vis Neurosci; 1999; 16(4):681-93. PubMed ID: 10431917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Readjustment of retinotectal projection following reimplantation of a rotated or inverted tectal tissue in adult goldfish.
    Yoon MG
    J Physiol; 1975 Oct; 252(1):137-58. PubMed ID: 1202195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The representation of the ipsilateral eye in nucleus isthmi of the leopard frog, Rana pipiens.
    Winkowski DE; Gruberg ER
    Vis Neurosci; 2002; 19(5):669-79. PubMed ID: 12507333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of corpus callosum for visual receptive fields of single neurons in cat superior colliculus.
    Antonini A; Berlucchi G; Marzi CA; Sprague JM
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):137-52. PubMed ID: 430108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrophysiological study of early retinotectal projection patterns during optic nerve regeneration in Hyla moorei.
    Humphrey MF; Beazley LD
    Brain Res; 1982 May; 239(2):595-602. PubMed ID: 6284308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.